Some new fixed point theorems under $$(\mathcal {A},\mathcal {S})$$(A,S)-contractivity conditions

[1]  Antonio-Francisco Roldán-López-de-Hierro,et al.  Common fixed point theorems under (R,S)$(R,\mathcal {S})$-contractivity conditions , 2016 .

[2]  D. O’Regan,et al.  Fixed Point Theory in Metric Type Spaces , 2016 .

[3]  Antonio-Francisco Roldn-Lopez-de-Hierro A Unified Version of Ran and Reuring’s Theorem and Nieto and Rodríguez-Lopez’s Theorem and Low-Dimensional Generalizations , 2016 .

[4]  Geeta Modi,et al.  AN EXTENSION OF BANACH CONTRACTION PRINCIPLE THROUGH RATIONAL EXPRESSION , 2016 .

[5]  E. Karapınar,et al.  On some fixed point theorems under (α,ψ,ϕ)$(\alpha,\psi,\phi)$-contractivity conditions in metric spaces endowed with transitive binary relations , 2015 .

[6]  N. Shahzad,et al.  New fixed point theorem under R-contractions , 2015 .

[7]  Stojan Radenović,et al.  A New Approach to the Study of Fixed Point Theory for Simulation Functions , 2015 .

[8]  H. Alsulami,et al.  Fixed points of α-admissible Meir-Keeler contraction mappings on quasi-metric spaces , 2015 .

[9]  Juan Martínez-Moreno,et al.  Coincidence point theorems on metric spaces via simulation functions , 2015, J. Comput. Appl. Math..

[10]  F. Khojasteh,et al.  New Results and Generalizations for Approximate Fixed Point Property and Their Applications , 2014 .

[11]  B. Samet,et al.  Generalized α-ψ contractive mappings in quasi-metric spaces and related fixed-point theorems , 2014 .

[12]  Juan Martínez-Moreno,et al.  Meir-Keeler Type Multidimensional Fixed Point Theorems in Partially Ordered Metric Spaces , 2013 .

[13]  K. Sadarangani,et al.  A fixed point theorem for contractions of rational type in partially ordered metric spaces , 2013 .

[14]  Bessem Samet,et al.  Generalized - Contractive Type Mappings and Related Fixed Point Theorems with Applications , 2012 .

[15]  Bessem Samet,et al.  Fixed point theorems for α–ψ-contractive type mappings , 2012 .

[16]  Binayak S. Choudhury,et al.  A Generalisation of Contraction Principle in Metric Spaces , 2008 .

[17]  A. RusIoan PICARD OPERATORS AND APPLICATIONS , 2003 .

[18]  Teck-Cheong Lim,et al.  On characterizations of Meir-Keeler contractive maps , 2001 .

[19]  Michael A. Geraghty,et al.  On contractive mappings , 1973 .

[20]  Emmett B. Keeler,et al.  A theorem on contraction mappings , 1969 .

[21]  N. X. Thuan,et al.  Fixed Point Theorem for Generalized Weak Contractions Involving Rational Expressions , 2013 .

[22]  I. Rus WEAKLY PICARD OPERATORS AND APPLICATIONS , 2001 .

[23]  J. B. Díaz,et al.  REMARKS ON A GENERALIZATION OF BANACH'S PRINCIPLE OF CONTRACTION MAPPINGS, , 1965 .