Residual error based adaptive mesh refinement with the non-intrusive patch algorithm
暂无分享,去创建一个
Mickaël Duval | Jean-Charles Passieux | Michel Salaün | Alexei Lozinski | A. Lozinski | M. Salaün | J. Passieux | Mickaël Duval
[1] L. Gallimard. A constitutive relation error estimator based on traction‐free recovery of the equilibrated stress , 2009 .
[2] Olivier Pironneau,et al. Numerical zoom for advection diffusion problems with localized multiscales , 2011 .
[3] Pierre Ladevèze,et al. Strict and practical bounds through a non-intrusive and goal-oriented error estimation method for linear viscoelasticity problems , 2009 .
[4] Anthony Gravouil,et al. Isogeometric local h-refinement strategy based on multigrids , 2015 .
[5] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[6] Pedro Díez,et al. Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method , 2009 .
[7] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[8] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[9] Pierre Alliez,et al. Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..
[10] Mathilde Chevreuil,et al. A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties , 2013 .
[11] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[12] Pedro Díez,et al. Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates , 2003 .
[13] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[14] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[15] K. Bathe,et al. Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .
[16] Pierre Gosselet,et al. A strict error bound with separated contributions of the discretization and of the iterative solver in non-overlapping domain decomposition methods , 2014 .
[17] Thomas Grätsch,et al. Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .
[18] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[19] I. Babuska,et al. The generalized finite element method , 2001 .
[20] Leszek Demkowicz,et al. Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .
[21] Steven E. Benzley,et al. Localized coarsening of conforming all-hexahedral meshes , 2010, Engineering with Computers.
[22] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[23] Ivo Babuška,et al. A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .
[24] Harold Liebowitz,et al. Hierarchical mesh adaptation of 2D quadrilateral elements , 1995 .
[25] Roland Glowinski,et al. Finite element approximation of multi-scale elliptic problems using patches of elements , 2005, Numerische Mathematik.
[26] Rolf Rannacher,et al. A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity , 1998 .
[27] Anthony T. Patera,et al. A hierarchical duality approach to bounds for the outputs of partial differential equations , 1998 .
[28] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[29] Julien Réthoré,et al. Direct estimation of generalized stress intensity factors using a multigrid XFEM , 2011 .
[30] Pedro Díez,et al. Accurate upper and lower error bounds by solving flux-free local problems in “stars” , 2004 .
[31] Francesca Rapetti,et al. Basics and some applications of the mortar element method , 2005 .
[32] Olivier Allix,et al. Nonintrusive coupling of 3D and 2D laminated composite models based on finite element 3D recovery , 2014, 1501.01933.
[33] Jacques Rappaz,et al. Multiscale algorithm with patches of finite elements , 2007 .
[34] Paul T. Bauman,et al. An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations , 2009 .
[35] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[36] Gunar Matthies,et al. The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions , 2002, Computing.
[37] Mickaël Duval,et al. Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposition , 2016 .
[38] J. Tinsley Oden,et al. Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms , 2009 .
[39] Pierre Ladevèze,et al. Local error estimators for finite element linear analysis , 1999 .
[40] Yvon Maday,et al. Mesh adaptivity in finite elements using the mortar method , 2000 .
[41] Pierre Gosselet,et al. Fast estimation of discretization error for FE problems solved by domain decomposition , 2010 .
[42] Robin Bouclier,et al. Local enrichment of NURBS patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture , 2016 .
[43] Ernst Rank,et al. Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .
[44] Vincent Heuveline,et al. H1-interpolation on quadrilateral and hexahedral meshes with hanging nodes , 2007, Computing.
[45] R. Verfürth. A review of a posteriori error estimation techniques for elasticity problems , 1999 .
[46] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[47] Johann Rannou,et al. A local multigrid X‐FEM strategy for 3‐D crack propagation , 2009 .
[48] P. Ladevèze. Constitutive Relation Error Estimators and Adaptivity in Structural Engineering , 2005 .
[49] C. Kelley. Solving Nonlinear Equations with Newton's Method , 1987 .
[50] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[51] Jeong-Ho Kim,et al. A new generalized finite element method for two‐scale simulations of propagating cohesive fractures in 3‐D , 2015 .
[52] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[53] Martin J. Gander,et al. Schwarz Methods over the Course of Time , 2008 .
[54] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[55] E. Stein,et al. An explicit residual‐type error estimator for Q1 ‐quadrilateral extended finite element method in two‐dimensional linear elastic fracture mechanics , 2012 .
[56] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[57] Michel Fortin,et al. A fully optimal anisotropic mesh adaptation method based on a hierarchical error estimator , 2012 .
[58] O. Allix,et al. Non-intrusive and exact global/local techniques for structural problems with local plasticity , 2009 .
[59] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .