Lexicographic α-robustness: An alternative to min-max criteria

Robustness in Operations Research/Decision Aid is often associated with min–max and min–max regret criteria. This common approach to determine robust solutions consists in finding a solution which minimizes the maximal cost or regret. Nevertheless, these criteria are known to be too conservative. In this paper, we present and study a new robustness approach, called lexicographic α-robustness, which compensates for this major drawback and many others. Furthermore, we establish a link between lexicographic α-robustness and a third robustness approach called p-robustness.

[1]  Abbas A. Kurawarwala,et al.  A robustness approach to uncapacitated network design problems , 1996 .

[2]  H. Moulin Axioms of Cooperative Decision Making , 1988 .

[3]  Wlodzimierz Ogryczak,et al.  On the lexicographic minimax approach to location problems , 1997, Eur. J. Oper. Res..

[4]  Gang Yu,et al.  On the Max-Min 0-1 Knapsack Problem with Robust Optimization Applications , 1996, Oper. Res..

[5]  P. Vincke,et al.  Relational Systems of Preference with One or More Pseudo-Criteria: Some New Concepts and Results , 1984 .

[6]  Lawrence V. Snyder,et al.  Facility location under uncertainty: a review , 2006 .

[7]  李幼升,et al.  Ph , 1989 .

[8]  Bernard Roy,et al.  Classement et choix en présence de points de vue multiples , 1968 .

[9]  Jean-Charles Billaut,et al.  Flexibility and Robustness in Scheduling , 2008 .

[10]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[11]  Daniel Vanderpooten,et al.  Lexicographic α-robustness: an application to the 1-median problem , 2010, RAIRO Oper. Res..

[12]  Mark S. Daskin,et al.  α-reliable p-minimax regret: a new model for strategic facility location modeling , 1997 .

[13]  Jean-Charles Pomerol,et al.  Scenario development and practical decision making under uncertainty , 1999, Decis. Support Syst..

[14]  Bernard Roy,et al.  To Better Respond to the Robustness Concern in Decision Aiding: Four Proposals Based on a Twofold Observation , 2010 .

[15]  Rim Kalai-Jemai,et al.  Une nouvelle approche de robustesse : application à quelques problèmes d'optimisation , 2006 .

[16]  I-Hsuan Hong,et al.  Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization , 2008, Comput. Oper. Res..

[17]  Daniel Vanderpooten,et al.  The lexicographic α-robust knapsack problem , 2011, Int. Trans. Oper. Res..

[18]  RICHARD L. DANIELS,et al.  β-Robust scheduling for single-machine systems with uncertain processing times , 1997 .

[19]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[20]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[21]  Emilio Carrizosa,et al.  Locating a competitive facility in the plane with a robustness criterion , 2011, Eur. J. Oper. Res..

[22]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[23]  Didier Dubois,et al.  Computing improved optimal solutions to max-min flexible constraint satisfaction problems , 1999, Eur. J. Oper. Res..

[24]  Virginie Gabrel,et al.  Robustness and duality in linear programming , 2010, J. Oper. Res. Soc..

[25]  Genaro J. Gutierrez,et al.  A robustness approach to international sourcing , 1995, Ann. Oper. Res..

[26]  Xiangtong Qi,et al.  A logistics scheduling model: scheduling and transshipment for two processing centers , 2006 .

[27]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[28]  Clare Harries,et al.  Correspondence to what? Coherence to what? What is good scenario-based decision making? , 2003 .

[29]  Didier Dubois,et al.  Selecting preferred solutions in the minimax approach to dynamic programming problems under flexible constraints , 2005, Eur. J. Oper. Res..

[30]  Marc Roubens,et al.  Choices and kernels in bipolar valued digraphs , 2006, Eur. J. Oper. Res..

[31]  P. Schoemaker MULTIPLE SCENARIO DEVELOPMENT: ITS CONCEPTUAL AND BEHAVIORAL FOUNDATION , 1993 .

[32]  Daniel Vanderpooten,et al.  Approximation of min-max and min-max regret versions of some combinatorial optimization problems , 2007, Eur. J. Oper. Res..

[33]  Yang Jian,et al.  On the robust shortest path problem , 1998, Comput. Oper. Res..

[34]  Genaro J. Gutierrez,et al.  Algorithms for robust single and multiple period layout planning for manufacturing systems , 1992 .

[35]  Philippe Vincke,et al.  Robust solutions and methods in decision‐aid , 1999 .

[36]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[37]  Philippe Vallin Détermination d'une période économique robuste dans le cadre du modèle de Wilson , 1999, RAIRO Oper. Res..

[38]  Bintong Chen,et al.  Minmax‐regret robust 1‐median location on a tree , 1998 .

[39]  Hassene Aissi,et al.  Robustness in Multi-criteria Decision Aiding , 2010, Trends in Multiple Criteria Decision Analysis.