Calcium-dependent action potentials in guinea-pig olfactory cortex neurones

Ca2+-dependent action potentials were recorded in guinea pig olfactory neurones in vitro (23°–25°C). In most cells (in the presence of tetrodotoxin: TTX) the current-voltage relationship displayed ‘anomalous’ rectification (apparent high slope resistance) at potentials ∼20 mV depolarized to the resting membrane potential (∼−80 mV) and strong outward rectification at more positive potentials. Intracellular Cs+-loading blocked outward rectification and increased action potential duration. Such spikes were TTX-insensitive and were further prolonged by external addition of tetraethylammonium (TEA) or Ba2+. Spikes recorded from Cs+-loaded, TTX/TEA-treated neurones displayed a prolonged plateau and an after-depolarization. They persisted when Ba2+ or Sr2+ were substituted for external Ca2+, but not when Mg2+ was the sole extracellular divalent cation. The spikes were blocked in the presence of Cd2+ but persisted when 82% of the extracellular Na+ was substituted by choline. A TTX-insensitive, slowly inactivating inward current at depolarized potentials is believed to account for the subthreshold ‘anomalous’ rectification and prolonged spike plateau.

[1]  D. Prince,et al.  A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. , 1980, Journal of neurophysiology.

[2]  R. Miledi,et al.  Voltage sensitive calcium entry in frog motoneurones. , 1980, The Journal of physiology.

[3]  P. Schwindt,et al.  Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro , 1982, Brain Research.

[4]  G. Bergey,et al.  Calcium-dependent action potentials in mouse spinal cord neurons in cell culture , 1981, Brain Research.

[5]  P. Kostyuk Calcium channels in the neuronal membrane. , 1981, Biochimica et biophysica acta.

[6]  T. Pedley,et al.  Slow Depolarizing Potentials in “Epileptic” Neurons , 1979, Epilepsia.

[7]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[8]  B. Connors,et al.  Electrophysiological properties of neocortical neurons in vitro. , 1982, Journal of neurophysiology.

[9]  M. Dichter,et al.  Action potential mechanism of mammalian cortical neurons in cell culture , 1983, Brain Research.

[10]  E. Puil,et al.  Internal cesium ions block various K conductances in spinal motoneurons. , 1981, Canadian journal of physiology and pharmacology.

[11]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[12]  M. Randić,et al.  Electrophysiological properties of rat spinal dorsal horn neurones in vitro: calcium‐dependent action potentials. , 1983, The Journal of physiology.

[13]  H. Wigström,et al.  A transient outward current in a mammalian central neurone blocked by 4-aminopyridine , 1982, Nature.

[14]  K. Mori,et al.  Two types of postsynaptic inhibition in pyriform cortex of the rabbit: fast and slow inhibitory postsynaptic potentials. , 1982, Journal of Neurophysiology.

[15]  I. Spector,et al.  The calcium current and the activation of a slow potassium conductance in voltage‐clamped mouse neuroblastoma cells. , 1979, The Journal of physiology.

[16]  D. Johnston,et al.  Voltage clamp discloses slow inward current in hippocampal burst-firing neurones , 1980, Nature.

[17]  D. A. Brown,et al.  Persistent slow inward calcium current in voltage‐clamped hippocampal neurones of the guinea‐pig. , 1983, The Journal of physiology.

[18]  D. Prince,et al.  Anomalous inward rectification in hippocampal neurons. , 1979, Journal of neurophysiology.

[19]  Paul R. Adams,et al.  Voltage-clamp analysis of muscarinic excitation in hippocampal neurons , 1982, Brain Research.

[20]  P. Schwindt,et al.  Role of a persistent inward current in motoneuron bursting during spinal seizures. , 1980, Journal of neurophysiology.

[21]  P. Kostyuk,et al.  Ionic currents in the somatic membrane of rat dorsal root ganglion neurons—II. Calcium currents , 1981, Neuroscience.

[22]  C. Stevens,et al.  Synaptic organization of cat olfactory cortex as revealed by intracellular recording. , 1969, Journal of neurophysiology.

[23]  P. Franz,et al.  Calcium-dependent inward currents in voltage-clamped guinea-pig olfactory cortex neurones , 2004, Pflügers Archiv.

[24]  S. Hagiwara,et al.  The calcium channel , 1983, Trends in Neurosciences.

[25]  A. Constanti,et al.  M-current in voltage-clamped olfactory cortex neurones , 1983, Neuroscience Letters.

[26]  C. Scholfield,et al.  Electrical properties of neurones in the olfactory cortex slice in vitro. , 1978, The Journal of physiology.

[27]  P. Schwartzkroin,et al.  Probable calcium spikes in hippocampal neurons , 1977, Brain Research.

[28]  P. Yarowsky,et al.  Calcium‐dependent potentials in the mammalian sympathetic neurone. , 1979, The Journal of physiology.

[29]  D. J. Adams,et al.  Ionic currents in molluscan soma. , 1980, Annual review of neuroscience.

[30]  W. A. Wilson,et al.  Voltage clamping with a single microelectrode. , 1975, Journal of neurobiology.

[31]  D. A. Brown,et al.  Calcium‐activated outward current in voltage‐clamped hippocampal neurones of the guinea‐pig. , 1983, The Journal of physiology.

[32]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[33]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. , 1980, The Journal of physiology.

[34]  A. Constanti,et al.  Fast inward‐rectifying current accounts for anomalous rectification in olfactory cortex neurones. , 1983, The Journal of physiology.

[35]  P. Adams,et al.  Control of calcium current in rat sympathetic neurons by norepinephrine , 1982, Brain Research.

[36]  T. Suppes A late slow depolarization unmasked in the presence of tetraethylammonium in neonatal rat sympathetic neurons in vitro , 1984, Brain Research.

[37]  K. Walton,et al.  Hydrogen peroxide as a source of molecular oxygen for in vitro mammalian CNS preparations , 1983, Brain Research.

[38]  A Grinvald,et al.  Localization of voltage-sensitive calcium channels along developing neurites: their possible role in regulating neurite elongation. , 1982, Developmental biology.

[39]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[40]  D. Prince,et al.  Participation of calcium spikes during intrinsic burst firing in hippocampal neurons , 1978, Brain Research.

[41]  吉田 繁 Tetrodotoxin-resistant sodium and calcium components of action potentials in dorsal root ganglion cells of the adult mouse , 1979 .

[42]  B. Connors,et al.  Mechanisms of neocortical epileptogenesis in vitro. , 1982, Journal of neurophysiology.

[43]  J. Gosling,et al.  A comparison between the physiological and histochemical characterisation of urethral striated muscle in the guinea pig , 2004, Pflügers Archiv.

[44]  P. G. Kostyuk,et al.  Ionic currents in the somatic membrane of rat dorsal root ganglion neurons—I. Sodium currents , 1981, Neuroscience.

[45]  D. Prince,et al.  Effects of tea on hippocampal neurons , 1980, Brain Research.

[46]  P. Grafe,et al.  Convulsant actions of 4-aminopyridine on the guinea-pig olfactory cortex slice , 1982, Brain Research.

[47]  P. Schwindt,et al.  Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. , 1982, Journal of neurophysiology.

[48]  S. Hagiwara,et al.  Membrane biophysics of calcium currents. , 1981, Federation proceedings.

[49]  G. Fischbach,et al.  Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. , 1981, The Journal of physiology.