On local convexity in graphs

Abstract A set K of nodes of a graph G is geodesically convex (respectively, monophonically convex) if K contains every node on every shortest (respectively, chordless) path joining nodes in K. We investigate the classes of graphs which are characterized by certain local convexity conditions with respect to geodesic convexity, in particular, those graphs in which balls around nodes are convex, and those graphs in which neighborhoods of convex sets are convex. For monophonic convexity, these conditions are known to be equivalent, and hold if and only if the graph is chordal. Although these conditions are not equivalent for geodesic convexity, each defines a generalization of the class of chordal graphs. A persistent theme here will be the analogies between these graphs and chordal graphs.

[1]  G. Dirac On rigid circuit graphs , 1961 .

[2]  Patricia Vanden Cruyce A convexity problem in 3-polytopal graphs , 1984 .

[3]  Robert E. Jamison On the Null-Homotopy of Bridged Graphs , 1987, Eur. J. Comb..

[4]  Henry Meyniel,et al.  Ensemble Convexes dans les Graphes I: Théorèmes de Helly et de Radon pour Graphes et Surfaces , 1983, Eur. J. Comb..

[5]  H. Tietze,et al.  Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen , 1928 .

[6]  Robert E. Jamison,et al.  A Helly theorem for convexity in graphs , 1984, Discret. Math..

[7]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[8]  Patricia Vanden Cruyce A convex characterization of the graphs of the dodecahedron and icosahedron , 1984, Discret. Math..

[9]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[10]  Douglas R. Shier,et al.  On powers and centers of chordal graphs , 1983, Discret. Appl. Math..

[11]  Lynn Margaret Batten Geodesic subgraphs , 1983, J. Graph Theory.

[12]  H. M. Mulder The interval function of a graph , 1980 .

[13]  Frank Harary,et al.  Convexity in graphs , 1981 .

[14]  Frank Harary,et al.  Graph Theory , 2016 .

[15]  M. Farber Bridged graphs and geodesic convexity , 1987, Discret. Math..

[16]  V. Soltan,et al.  Conditions for invariance of set diameters under d-convexification in a graph , 1983 .

[17]  Robert E. Jamison-Waldner PARTITION NUMBERS FOR TREES AND ORDERED SETS , 1981 .

[18]  Jean-Michel Delire,et al.  Graphs with high Radon number , 1984 .