Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)‐MRI estimates of cerebral blood volume (CBV) in human gliomas

To compare “standardization,” “Gaussian normalization,” and “Z‐score normalization” intensity transformation techniques in dynamic susceptibility contrast magnetic resonance imaging (DSC‐MRI) estimates of cerebral blood volume (CBV) in human gliomas. DSC‐MRI is a well‐established biomarker for CBV in brain tumors; however, DSC‐MRI estimates of CBV are semiquantitative. The use of image intensity transformation algorithms provides a mechanism for obtaining quantitatively similar CBV maps with the same intensity scaling.

[1]  R M Weisskoff,et al.  Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. , 2006, AJNR. American journal of neuroradiology.

[2]  Glyn Johnson,et al.  Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. , 2006, Radiology.

[3]  T Kubota,et al.  Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. , 1993, Radiology.

[4]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[5]  B. Rosen,et al.  Perfusion imaging with NMR contrast agents , 1990, Magnetic resonance in medicine.

[6]  Olaf Hauk,et al.  Comparison of noise-normalized minimum norm estimates for MEG analysis using multiple resolution metrics , 2011, NeuroImage.

[7]  B. D. Ward,et al.  Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. , 2004, AJNR. American journal of neuroradiology.

[8]  Jayaram K. Udupa,et al.  New variants of a method of MRI scale standardization , 2000, IEEE Transactions on Medical Imaging.

[9]  B. D. Ward,et al.  Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation , 2005, Magnetic resonance in medicine.

[10]  K. Schmainda,et al.  Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter‐ and intrapatient comparisons , 2010, Magnetic resonance in medicine.

[11]  B. Rosen,et al.  High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[12]  M A Viergever,et al.  Simultaneous quantitative cerebral perfusion and Gd‐DTPA extravasation measurement with dual‐echo dynamic susceptibility contrast MRI , 2000, Magnetic resonance in medicine.

[13]  A P Pathak,et al.  Utility of simultaneously acquired gradient‐echo and spin‐echo cerebral blood volume and morphology maps in brain tumor patients , 2000, Magnetic resonance in medicine.

[14]  L G Nyúl,et al.  On standardizing the MR image intensity scale , 1999, Magnetic resonance in medicine.

[15]  K. Schmainda,et al.  Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. , 2008, Radiology.

[16]  K Sartor,et al.  Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood-brain-barrier. , 1999, Magnetic resonance imaging.

[17]  T. Miyati,et al.  Dual dynamic contrast‐enhanced MR imaging , 1997, Journal of magnetic resonance imaging : JMRI.

[18]  G Johnson,et al.  Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2006, AJNR. American journal of neuroradiology.