Quantum Convolutional BCH Codes

Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. We introduce two new families of quantum convolutional codes. Our construction is based on an algebraic method which allows to construct classical convolutional codes from block codes, in particular BCH codes. These codes have the property that they contain their Euclidean, respectively Hermitian, dual codes. Hence, they can be used to define quantum convolutional codes by the stabilizer code construction. We compute BCH-like bounds on the free distances which can be controlled as in the case of block codes, and establish that the codes have non-catastrophic encoders.

[1]  Martin Rötteler,et al.  Constructions of Quantum Convolutional Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[2]  H. Ollivier,et al.  Quantum convolutional codes: fundamentals , 2004 .

[3]  Lin-nan Lee,et al.  Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[4]  Martin Rötteler,et al.  Non-catastrophic Encoders and Encoder Inverses for Quantum Convolutional Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[5]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[6]  Av . Van Becelaere A CONVOLUTIONAL EQUIVALENT TO REED- SOLOMON CODES , 1988 .

[7]  Jørn Justesen,et al.  Bounds on distances and error exponents of unit memory codes , 1983, IEEE Trans. Inf. Theory.

[8]  Markus Grassl,et al.  Convolutional and Tail-Biting Quantum Error-Correcting Codes , 2005, IEEE Transactions on Information Theory.

[9]  Joachim Rosenthal,et al.  BCH convolutional codes , 1999, IEEE Trans. Inf. Theory.

[10]  Heide Gluesing-Luerssen,et al.  On Doubly-Cyclic Convolutional Codes , 2006, Applicable Algebra in Engineering, Communication and Computing.

[11]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[12]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[13]  Philippe Piret A convolutional equivalent to Reed-Solomon codes , 1988 .

[14]  Kjell Jørgen Hole On classes of convolutional codes that are not asymptotically catastrophic , 2000, IEEE Trans. Inf. Theory.

[15]  Martin Rötteler,et al.  Quantum block and convolutional codes from self-orthogonal product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[16]  Pradeep Kiran Sarvepalli,et al.  Quantum Convolutional Codes Derived From Reed-Solomon and Reed-Muller Codes , 2007, ArXiv.