Chapter 7 – BOVB - A valence bond method incorporating static and dynamic correlation effects

[1]  William A. Goddard,et al.  The Description of Chemical Bonding From AB Initio Calculations , 1978 .

[2]  P. Aped,et al.  A Valence bond description of bond dissociation energy curves , 1996 .

[3]  Philippe C. Hiberty,et al.  Compact valence bond functions with breathing orbitals: Application to the bond dissociation energies of F2 and FH , 1994 .

[4]  A. Pross The single electron shift as a fundamental process in organic chemistry: the relationship between polar and electron-transfer pathways , 1985 .

[5]  Ernest R. Davidson,et al.  The two lowest energy 2A′ states of NO2 , 1976 .

[6]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[7]  John C. Slater,et al.  Note on Molecular Structure , 1932 .

[8]  Douglas J. Klein,et al.  Valence-bond theory and chemical structure , 1990 .

[9]  M. Nascimento,et al.  A generalized multistructural (GMS) description of the photoelectron spectra of the trans-glyoxal molecule , 1993 .

[10]  P. Hiberty,et al.  HO∴OH−: a model for stable three-electron bonded peroxide radical anions , 1995 .

[11]  Orthogonalized atomic orbitals and the interpretation of valence bond wavefunctions , 1987 .

[12]  David L. Cooper,et al.  Applications of spin-coupled valence bond theory , 1991 .

[13]  P. Ruttink,et al.  Optimization of both resonance structures of the glyoxal radical cation by means of the Valence Bond Self-Consistent Field method , 1993 .

[14]  G. W. Wheland,et al.  Resonance in Organic Chemistry , 1956 .

[15]  P. Hiberty,et al.  Theoretical study of the ground- and excited-state reactivity of sodium and hydrogen fluoride. Comparison of SCF-CI and VB treatments , 1987 .

[16]  Bielschowsky,et al.  Generalized multistructural calculation of the optical and generalized oscillator strengths for inner-shell excitations in N2. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[18]  F. Gadéa,et al.  The structure of Ar3 , 1994 .

[19]  W. Goddard,et al.  Valence-bond concepts in transition metals: metal hydride diatomic cations , 1990 .

[20]  M. Nascimento,et al.  A generalized multi-structural wavefunction. The He+2 molecule as an example , 1991 .

[21]  Sason Shaik,et al.  What happens to molecules as they react? A valence bond approach to reactivity , 1981 .

[22]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[23]  Nakatsuka,et al.  Excess-path-length distribution of fast charged particles. , 1987, Physical review. D, Particles and fields.

[24]  David L. Cooper,et al.  Modern Valence Bond Theory , 1997 .

[25]  M. Nascimento,et al.  A Comparative Study of the Gas-Phase Acidities of Aliphatic Alcohols and Carboxylic Acids from Generalized Valence Bond and Generalized Multistructural Calculations , 1996 .

[26]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. II. THE ONE-ELECTRON BOND AND THE THREE-ELECTRON BOND , 1931 .

[27]  P. Hiberty,et al.  Diatomic Halogen Anions and Related Three-Electron-Bonded Anion Radicals: Very Contrasted Performances of Møller−Plesset Methods in Symmetric vs Dissymmetric Cases , 2000 .

[28]  A. Pross A General Approach to Organic Reactivity: The Configuration Mixing Model , 1985 .

[29]  A. Voter,et al.  A method for describing resonance between generalized valence bond wavefunctions , 1981 .

[30]  Philippe C. Hiberty,et al.  Compact and accurate valence bond functions with different orbitals for different configurations: application to the two-configuration description of F2 , 1992 .

[31]  A. Voter,et al.  The generalized resonating valence bond description of cyclobutadiene , 1986 .

[32]  J. V. Lenthe,et al.  ON THE EVALUATION OF NON-ORTHOGONAL MATRIX ELEMENTS , 1991 .

[33]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[34]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[35]  Shaik,et al.  pi bonding in second and third row molecules: testing the strength of Linus's blanket , 2000, Chemistry.

[36]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[37]  P. Hiberty,et al.  Mechanistic study of the physical quenching of excited lithium by nitrogen: comparison of diabatic and VB potential energy surfaces , 1991 .

[38]  P. Hiberty,et al.  Charge-Shift Bonding in Group IVB Halides: A Valence Bond Study of MH3−Cl (M = C, Si, Ge, Sn, Pb) Molecules , 1999 .

[39]  S. Shaik The Collage of SN2 Reactivity Patterns: A State Correlation Diagram Model , 2007 .

[40]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[41]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[42]  M. Nascimento,et al.  A generalized multistructural wave function , 1993 .

[43]  Manuela Merchán,et al.  The ab initio calculation of inner sphere reorganization energies of inorganic redox couples , 1993 .

[44]  T. Clark Odd-electron .sigma. bonds , 1988 .

[45]  M. Merchán,et al.  Analysis of the CIPSI/DCCI approach to characterize the HF and F2 single bond , 1990 .

[46]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[47]  Sason Shaik,et al.  Valence Bond Diagrams and Chemical Reactivity. , 1999, Angewandte Chemie.

[48]  William A. Goddard,et al.  Self‐Consistent Procedures for Generalized Valence Bond Wavefunctions. Applications H3, BH, H2O, C2H6, and O2 , 1972 .

[49]  W. Goddard,et al.  Theoretical studies of transition-metal hydrides. 2. Calcium monohydride(1+) through zinc monohydride(1+) , 1987 .

[50]  S. Creighton,et al.  Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution , 1988 .

[51]  Philippe C. Hiberty,et al.  Nature of the Differential Electron Correlation in Three-Electron Bond Dissociations. Efficiency of a Simple Two-Configuration Valence Bond Method with Breathing Orbitals , 1994 .

[52]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[53]  P. Hiberty,et al.  Role of .pi.-Electron Delocalization in the Enhanced Acidity of Carboxylic Acids and Enols Relative to Alcohols , 1995 .

[54]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .

[55]  David L. Cooper,et al.  Spin-coupled valence bond theory , 1988 .

[56]  A. Voter,et al.  The generalized resonating valence bond method: Barrier heights in the HF + D and HCl + D exchange reactions , 1981 .

[57]  John C. Slater,et al.  Cohesion in Monovalent Metals , 1930 .

[58]  P. Hiberty,et al.  Comparison of C−Cl and Si−Cl Bonds. A Valence Bond Study , 1996 .

[59]  Linus Pauling,et al.  The Normal State of the Helium Molecule-Ions He 2 + and He 2 ++ , 1933 .

[60]  John C. Slater,et al.  Note on Hartree's Method , 1930 .

[61]  D. Lauvergnat,et al.  Valence Bond Analysis of the Lone Pair Bond Weakening Effect for the X−H Bonds in the Series XHn = CH4, NH3, OH2, FH , 1996 .

[62]  Sason Shaik,et al.  A qualitative valence-bond approach to organic reactivity , 1982 .

[63]  P. Hiberty,et al.  Origins of the Exalted b2u Frequency in the First Excited State of Benzene , 1996 .

[64]  Sason Shaik,et al.  When does electronic delocalization become a driving force of chemical bonding , 1988 .

[65]  A. D. McLean,et al.  Symmetry breaking in molecular calculations and the reliable prediction of equilibrium geometries. The formyloxyl radical as an example , 1985 .

[66]  D. L. Cooper,et al.  The Spin-Coupled Valence Bond Description of Benzenoid Aromatic Molecules , 1990, Advances in the Theory of Benzenoid Hydrocarbons.

[67]  P. Hiberty,et al.  Role of Conjugation in the Stabilities and Rotational Barriers of Formamide and Thioformamide. An ab Initio Valence-Bond Study , 1997 .

[68]  P. Hiberty,et al.  Quenching of lithium by nitrogen. A dual theoretical MO-CI and VB investigation of the role of ionic and covalent surfaces , 1988 .

[69]  C. Bauschlicher,et al.  Positive ions of the first- and second-row transition metal hydrides , 1987 .

[70]  Sason Shaik,et al.  Is delocalization a driving force in chemistry? Benzene, allyl radical, cyclobutadiene, and their isoelectronic species , 1987 .

[71]  S. Shaik,et al.  A Valence Bond Study of the Bonding in First Row Transition Metal Hydride Cations: What Energetic Role Does Covalency Play? † , 2000 .

[72]  J. V. Lenthe,et al.  The generalized Slater–Condon rules , 1991 .

[73]  L. Radom,et al.  Structures and stabilities of singly charged three-electron hemibonded systems and their hydrogen-bonded isomers , 1988 .

[74]  P. Hiberty,et al.  When does electronic delocalization become a driving force of molecular shape and stability? 1. The aromatic sextet , 1985 .

[75]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[76]  W. D. Allen,et al.  Is the oxywater radical cation more stable than neutral oxywater , 1996 .

[77]  P. Hiberty,et al.  WHAT IS PHYSICALLY WRONG WITH THE DESCRIPTION OF ODD-ELECTRON BONDING BY HARTREE-FOCK THEORY ? A SIMPLE NONEMPIRICAL REMEDY , 1995 .

[78]  John C. Slater,et al.  Molecular Energy Levels and Valence Bonds , 1931 .