Optimal quantum networks and one-shot entropies

We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interactive tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.

[1]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[2]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[3]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[4]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[5]  G Chiribella,et al.  Quantum circuit architecture. , 2007, Physical review letters.

[6]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[7]  Č. Brukner,et al.  Quantum correlations with no causal order , 2011, Nature Communications.

[8]  A. J. Scott Optimizing quantum process tomography with unitary 2-designs , 2007, 0711.1017.

[9]  Gilles Brassard,et al.  Machine Learning in a Quantum World , 2006, Canadian AI.

[10]  G. Chiribella Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.

[11]  Matthew F Pusey,et al.  Theory-independent limits on correlations from generalized Bayesian networks , 2014, 1405.2572.

[12]  R. Werner,et al.  A short impossibility proof of quantum bit commitment , 2009, 0905.3801.

[13]  G. D’Ariano,et al.  Optimal quantum tomography of States, measurements, and transformations. , 2008, Physical review letters.

[14]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[15]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[16]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[17]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[18]  Seth Lloyd,et al.  Universal Quantum Emulator , 2016, 1606.02734.

[19]  M. Mivcuda,et al.  Experimental replication of single-qubit quantum phase gates , 2016, 1701.04062.

[20]  G. D’Ariano,et al.  Theoretical framework for quantum networks , 2009, 0904.4483.

[21]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[22]  R. Werner,et al.  Optimal manipulations with qubits: Universal-NOT gate , 1999, quant-ph/9901053.

[23]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[24]  Gus Gutoski,et al.  Toward a general theory of quantum games , 2006, STOC '07.

[25]  Stefan Wolf,et al.  Perfect signaling among three parties violating predefined causal order , 2013, 2014 IEEE International Symposium on Information Theory.

[26]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[27]  A. Zeilinger,et al.  Advanced quantum communications experiments with entangled photons , 2005 .

[28]  P. Selinger Towards a semantics for higher-order quantum computation , 2004 .

[29]  G. D’Ariano,et al.  Quantum computation with programmable connections between gates , 2011, 1109.5987.

[30]  P. Horodecki,et al.  Method for direct detection of quantum entanglement. , 2001, Physical review letters.

[31]  vCaslav Brukner,et al.  Quantum circuits cannot control unknown operations , 2013, 1309.7976.

[32]  G. D’Ariano,et al.  No signaling, entanglement breaking, and localizability in bipartite channels. , 2010, Physical review letters.

[33]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[34]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[35]  Č. Brukner,et al.  A graph-separation theorem for quantum causal models , 2014, 1406.0430.

[36]  Jian-Wei Pan,et al.  Experimental quasi-single-photon transmission from satellite to earth. , 2013, Optics express.

[37]  Č. Brukner Bounding quantum correlations with indefinite causal order , 2014, 1404.0721.

[38]  D. Poulin,et al.  Quantum Graphical Models and Belief Propagation , 2007, 0708.1337.

[39]  Isaac L. Chuang,et al.  Quantum Information And Computation , 1996 .

[40]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[41]  Christian Majenz,et al.  Information–theoretic implications of quantum causal structures , 2014, Nature Communications.

[42]  Philip Walther,et al.  Experimental superposition of orders of quantum gates , 2014, Nature Communications.

[43]  Ueli Maurer,et al.  Causal Boxes: Quantum Information-Processing Systems Closed Under Composition , 2015, IEEE Transactions on Information Theory.

[44]  Fabio Costa,et al.  Quantum causal modelling , 2015, 1512.07106.

[45]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[46]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[47]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[48]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[49]  Akihito Soeda,et al.  Quantum algorithm for universal implementation of the projective measurement of energy. , 2013, Physical review letters.

[50]  Anna Jencova Base norms and discrimination of generalized quantum channels , 2014 .

[51]  N. Datta,et al.  Equivalence between divisibility and monotonic decrease of information in classical and quantum stochastic processes , 2014, 1408.7062.

[52]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[53]  Gus Gutoski On a measure of distance for quantum strategies , 2010, 1008.4636.

[54]  L. Hardy Quantum Gravity Computers: On the Theory of Computation with Indefinite Causal Structure , 2007, quant-ph/0701019.

[55]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[56]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[57]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[58]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[59]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[60]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[61]  B. Valiron,et al.  Beyond Quantum Computers , 2009 .

[62]  T. Morimae Acausal measurement-based quantum computing , 2014, 1404.3042.

[63]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[64]  G. D’Ariano,et al.  Optimal quantum learning of a unitary transformation , 2009, 0903.0543.

[65]  L. Hardy Reformulating and Reconstructing Quantum Theory , 2011, 1104.2066.

[66]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[67]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[68]  Mateus Araújo,et al.  Computational advantage from quantum-controlled ordering of gates. , 2014, Physical review letters.

[69]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[70]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[71]  M. Nielsen A simple formula for the average gate fidelity of a quantum dynamical operation [rapid communication] , 2002, quant-ph/0205035.

[72]  Optimal realization of the transposition maps , 2003, quant-ph/0304175.

[73]  B. Yurke,et al.  Einstein-Podolsky-Rosen effects from independent particle sources. , 1992, Physical review letters.

[74]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[75]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[76]  Yoon-Ho Kim,et al.  Experimental realization of an approximate partial transpose for photonic two-qubit systems. , 2011 .

[77]  G. D’Ariano,et al.  Optimal cloning of unitary transformation. , 2008, Physical review letters.

[78]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[79]  V. Dunjko,et al.  Implementing quantum control for unknown subroutines , 2014, 1401.8128.

[80]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[81]  J. Preskill,et al.  Causal and localizable quantum operations , 2001, quant-ph/0102043.

[82]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[83]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[84]  A. Politi,et al.  Integrated Quantum Photonics , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[85]  Stefan Wolf,et al.  Non-causal computation avoiding the grandfather and information antinomies , 2016, ArXiv.

[86]  Nilanjana Datta,et al.  A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels , 2011, IEEE Transactions on Information Theory.

[87]  Conditions for optimal input states for discrimination of quantum channels , 2016, 1603.01437.

[88]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[89]  D. Janzing,et al.  A quantum advantage for inferring causal structure , 2015, Nature Physics.

[90]  A. Harrow,et al.  Efficient distributed quantum computing , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[91]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[92]  Jinyu Xie,et al.  Optimal design and quantum benchmarks for coherent state amplifiers. , 2013, Physical review letters.

[93]  W. Dür,et al.  Deterministic superreplication of one-parameter unitary transformations. , 2014, Physical review letters.

[94]  G. D’Ariano,et al.  Transforming quantum operations: Quantum supermaps , 2008, 0804.0180.

[95]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[96]  Nilanjana Datta,et al.  One-Shot Rates for Entanglement Manipulation Under Non-entangling Maps , 2009, IEEE Transactions on Information Theory.

[97]  Č. Brukner,et al.  The simplest causal inequalities and their violation , 2015, 1508.01704.

[98]  Yoon-Ho Kim,et al.  Experimental realization of an approximate partial transpose for photonic two-qubit systems , 2012, Other Conferences.

[99]  G. Chiribella,et al.  Optimal networks for quantum metrology: semidefinite programs and product rules , 2012, 1207.6172.

[100]  Maxim Raginsky,et al.  A fidelity measure for quantum channels , 2001, quant-ph/0107108.

[101]  M. Horodecki,et al.  Properties of quantum nonsignaling boxes , 2006 .

[102]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[103]  Marco Tomamichel,et al.  Quantum Information Processing with Finite Resources - Mathematical Foundations , 2015, ArXiv.

[104]  Fedor Jelezko,et al.  Processing quantum information in diamond , 2006 .

[105]  J. Bae,et al.  Optimal approximate transpose map via quantum designs and its applications to entanglement detection , 2013, 1303.3096.

[106]  S. Popescu,et al.  Thermodynamics and the measure of entanglement , 1996, quant-ph/9610044.

[107]  Robert R. Tucci Quantum Bayesian Nets , 1995, quant-ph/9706039.

[108]  Go Kato,et al.  Entanglement-assisted classical communication can simulate classical communication without causal order , 2016, 1602.08835.

[109]  Vedran Dunjko,et al.  Quantum speedup for active learning agents , 2014, 1401.4997.

[110]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[111]  L. Hardy The operator tensor formulation of quantum theory , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[112]  Kavan Modi,et al.  Unification of witnessing initial system-environment correlations and witnessing non-Markovianity , 2012, 1204.2197.

[113]  Joonwoo Bae,et al.  Operational Characterization of Divisibility of Dynamical Maps. , 2016, Physical review letters.

[114]  G. Chiribella,et al.  Universal superreplication of unitary gates. , 2014, Physical review letters.

[115]  P. Horodecki From limits of quantum operations to multicopy entanglement witnesses and state-spectrum estimation , 2003 .

[116]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[117]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[118]  Giulio Chiribella,et al.  Memory effects in quantum channel discrimination. , 2008, Physical review letters.

[119]  M. Ziman,et al.  Incompatible measurements on quantum causal networks , 2015, 1511.00976.

[120]  M. Ziman Process positive-operator-valued measure: A mathematical framework for the description of process tomography experiments , 2008, 0802.3862.

[121]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[122]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[123]  Giulio Chiribella,et al.  Quantum superreplication of states and gates , 2015, ArXiv.

[124]  A. G. White,et al.  Characterizing quantum dynamics with initial system-environment correlations. , 2014, Physical review letters.