Polybenzimidazole/Acid Complexes as High-Temperature Membranes

This chapter reviews the progress towards applying acid-doped polybenzimidazoles (PBIs) as polymer electrolyte membrane (PEM) fuel cell membranes over approximately the last ten years. The major focus of the first part of the chapter is on three main systems: (1) the well-developed meta-PBI (poly(2,2′-m-phenylene-5,5′-bibenzimidazole)); (2) the various derivatives and filled systems based on meta-PBI; and (3) poly(2,5-benzimidazole) (AB-PBI). The polymer membrane properties, such as thermal and chemical stability, ionic conductivity, mechanical properties, and ability to be manufactured into a membrane and electrode assembly (MEA), are discussed in detail. Preliminary fuel cell performance is reported for a number of PBI chemistries. The second section of the chapter highlights recent work on developing a novel process to produce phosphoric acid (PA)-doped PBI membranes for use in high-temperature PEMFCs. This novel sol-gel process, termed the polyphosphoric acid (PPA) process, allows production of a gel membrane that exhibits properties not observed with the “traditionally” prepared PBIs, such as improved ionic conductivity, mechanical properties, fuel cell performance, and long-term stability. The final section of the chapter focuses on the possible degradation modes of the commercially available products from BASF Fuel Cells.

[1]  D. Yan,et al.  Synthesis and characterization of thermally stable sulfonated polybenzimidazoles , 2005 .

[2]  Ronghuan He,et al.  Integration of high temperature PEM fuel cells with a methanol reformer , 2005 .

[3]  T. Berning,et al.  Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes , 2007 .

[4]  G. Wegner,et al.  Proton transport in polybenzimidazole blended with H3PO4 or H2SO4 , 2002 .

[5]  C. Kontoyannis,et al.  Development and Characterization of Acid-Doped Polybenzimidazole/Sulfonated Polysulfone Blend Polymer Electrolytes for Fuel Cells , 2001 .

[6]  R. Savinell,et al.  Polybenzimidazoles/Phosphoric Acid Solid Polymer Electrolytes: Mechanical and Electrical Properties , 1998 .

[7]  J. Kerres,et al.  Blended and Cross‐Linked Ionomer Membranes for Application in Membrane Fuel Cells , 2005 .

[8]  P. Gómez‐Romero,et al.  Sulfonated poly(2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells , 2004 .

[9]  J. Kallitsis,et al.  Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units , 2005 .

[10]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[11]  Ronghuan He,et al.  Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells , 2006 .

[12]  W. Meyer,et al.  ANHYDROUS PROTON-CONDUCTING POLYMERS , 2003 .

[13]  R. Bouchet,et al.  Proton conduction in acid doped polybenzimidazole , 1999 .

[14]  S. An,et al.  Synthesis of Poly(2,5‐benzimidazole) for Use as a Fuel‐Cell Membrane , 2004 .

[15]  M. Minutoli,et al.  Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application , 2000 .

[16]  T. Jarvi,et al.  Electrocatalytic corrosion of carbon support in PEMFC cathodes , 2004 .

[17]  Jesse S. Wainright,et al.  High pressure electrical conductivity studies of acid doped polybenzimidazole , 1998 .

[18]  D. Yan,et al.  Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization , 2002 .

[19]  N. Ogata,et al.  Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells , 2002 .

[20]  T. Jarvi,et al.  Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions , 2004 .

[21]  M. Litt,et al.  Structure of a poly(2,5-benzimidazole)/phosphoric acid complex , 2004 .

[22]  R. Savinell,et al.  Trimethoxymethane as an alternative fuel for a direct oxidation PBI polymer electrolyte fuel cell , 1998 .

[23]  Jingwei Hu,et al.  Degradation study on MEA in H3PO4/PBI high-temperature PEMFC life test , 2007 .

[24]  J. Reynolds,et al.  Water-soluble polybenzimidazole-based polyelectrolytes , 1992 .

[25]  Hubert A. Gasteiger,et al.  Effect of Relative Humidity on Oxygen Reduction Kinetics in a PEMFC , 2005 .

[26]  S. M. Javaid Zaidi,et al.  Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate , 2005 .

[27]  Scott G. Wierschke,et al.  Electronic structure and properties of strained polymers: 2. Rigid-rod PBI, PBO and PBZT , 1992 .

[28]  Y. Yamazaki,et al.  Proton conductivity of zirconium tricarboxybutylphosphonate/PBI nanocomposite membrane , 2004 .

[29]  O. Ohashi,et al.  Phosphorus Nuclear Magnetic Resonance in Polyphosphates and Determination of Their Hydrolysis Rate Constants , 1970 .

[30]  K. Sanui,et al.  Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers , 2000 .

[31]  Hardcover,et al.  Carbon: Electrochemical and Physicochemical Properties , 1988 .

[32]  Robert F. Savinell,et al.  Imidazole and 1-methyl imidazole in phosphoric acid doped polybenzimidazole, electrolyte for fuel cells , 2002 .

[33]  Ronghuan He,et al.  Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors , 2003 .

[34]  T. Lim,et al.  Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer , 2007 .

[35]  D. Sherrington,et al.  SYNTHESIS AND CHARACTERIZATION OF POLYBENZIMIDAZOLES CARRYING ADDITIONAL PYRIDINE AND IMIDAZOLE GROUPS IN THE MAIN CHAIN , 1991 .

[36]  R. Savinell,et al.  Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments , 1996 .

[37]  O. Savadogo,et al.  Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI) , 2000 .

[38]  Deborah J. Jones,et al.  Role of post-sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly(benzimidazole) membranes , 2002 .

[39]  C. Marvel,et al.  Polybenzimidazoles, new thermally stable polymers , 1961 .

[40]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .

[41]  Brian C. Benicewicz,et al.  Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications , 2005 .

[42]  P. Gómez‐Romero,et al.  Hybrid proton-conducting membranes for polymer electrolyte fuel cells Phosphomolybdic acid doped poly(2,5-benzimidazole)-(ABPBI-H3PMo12O40) , 2005 .

[43]  Youngkwan Lee,et al.  Aromatic and rigid rod polyelectrolytes based on sulfonated poly(benzobisthiazoles) , 1996 .

[44]  Y. So,et al.  Study of the Mechanism for Poly(p-phenylene)benzoxazole PolymerizationA Remarkable Reaction Pathway To Make Rigid-Rod Polymers , 1998 .

[45]  H. Kita,et al.  Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4‘-Diaminodiphenyl Ether-2,2‘-disulfonic Acid , 2002 .

[46]  C. Kontoyannis,et al.  New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole , 2001 .

[47]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[48]  B. Kosmala,et al.  Ion‐exchange membranes prepared by blending sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) with polybenzimidazole , 2002 .

[49]  Jie Yin,et al.  Synthesis and properties of hyperbranched polybenzimidazoles via A2 + B3 approach , 2007 .

[50]  R. Marcilla,et al.  Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes , 2004 .

[51]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[52]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[53]  Fariborz Atabaki,et al.  Synthesis and characterization of new thermally stable polybenzimidazoles and poly(amide-benzimidazole)s , 2002 .

[54]  S. Tjong,et al.  Proton-exchange membrane electrolytes derived from phosphonic acid containing poly(arylene ether)s , 2003 .

[55]  Deborah J. Jones,et al.  Synthesis and characterisation of sulfonated polybenzimidazole: a highly conducting proton exchange polymer , 1997 .

[56]  K. Sanui,et al.  Relationship between absorbed water and proton conductivity in sulfopropylated poly(benzimidazole) , 2000 .

[57]  M. Mulder,et al.  New polymeric electrolyte membranes based on proton donor-proton acceptor properties for direct methanol fuel cells☆ , 2002 .

[58]  P. Gómez‐Romero,et al.  Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting , 2004 .

[59]  H. Pu Studies on polybenzimidazole/poly (4-vinylpyridine) blends and their proton conductivity after doping with acid , 2003 .

[60]  P. Gómez‐Romero,et al.  Proton‐conducting polymers based on benzimidazoles and sulfonated benzimidazoles , 2002 .

[61]  P. Gómez‐Romero,et al.  Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells , 2003 .

[62]  Gao Qing Lu,et al.  Solid acid membranes for high temperature (¿140° C) proton exchange membrane fuel cells , 2005 .

[63]  R. Wycisk,et al.  Sulfonated Polyphosphazene-Polybenzimidazole Membranes for DMFCs , 2005 .

[64]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[65]  Jesse S. Wainright,et al.  A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte , 1996 .

[66]  L. Gubler,et al.  Celtec-V A Polybenzimidazole-Based Membrane for the Direct Methanol Fuel Cell , 2007 .

[67]  V. Deimede,et al.  Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications , 2000 .

[68]  P. Jannasch Recent developments in high-temperature proton conducting polymer electrolyte membranes , 2003 .

[69]  T. Lim,et al.  PBI Derivatives: Polymer Electrolyte Fuel Cell Membrane for High Temperature Operation , 2004 .

[70]  Pedro Gómez-Romero,et al.  Recent Developments on Proton Conduc‐ting Poly(2,5‐benzimidazole) (ABPBI) Membranes for High Temperature Poly‐mer Electrolyte Membrane Fuel Cells , 2005 .

[71]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[72]  N. Giordano,et al.  Electrochemical corrosion behavior of carbon black in phosphoric acid , 1988 .

[73]  G. Gebel,et al.  Synthesis of Sulfonated Polybenzimidazoles from Functionalized Monomers: Preparation of Ionic Conducting Membranes , 2007 .

[74]  J. Reynolds,et al.  Aramid and imidazole based polyelectrolytes: physical properties and ternary phase behavior with poly(benzobisthiazole) in methanesulfonic acid , 1993 .

[75]  Ho-jin Kweon,et al.  Polybenzimidazoles for High Temperature Fuel Cell Applications , 2004 .

[76]  Li Qingfeng,et al.  Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications , 2001 .

[77]  Y. Yamazaki,et al.  Preparation, characterization and proton conductivity of membrane based on zirconium tricarboxybutylphosphonate and polybenzimidazole for fuel cells , 2004 .

[78]  H. Chu,et al.  Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells , 2007 .

[79]  Deborah J. Jones,et al.  Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole , 1999 .

[80]  Stephen P. Miller,et al.  A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole , 2001 .

[81]  R. Huggins Solid State Ionics , 1989 .

[82]  C. Kontoyannis,et al.  A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes , 2002 .

[83]  Jingwei Hu,et al.  Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis , 2006 .

[84]  H. Pu,et al.  Methanol permeability and proton conductivity of polybenzimidazole and sulfonated polybenzimidazole , 2004 .

[85]  T. Schmidt Durability and Degradation in High-Temperature Polymer Electrolyte Fuel Cells , 2006 .

[86]  Deborah J. Jones,et al.  Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications , 2001 .

[87]  P. Cañizares,et al.  PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability , 2007 .

[88]  Qingfeng Li,et al.  Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells , 2004 .

[89]  Adélio Mendes,et al.  Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures , 2005 .

[90]  N. Ogata,et al.  Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules , 2000 .

[91]  W. Gu,et al.  Beginning‐of‐life MEA performance — efficiency loss contributions , 2010 .

[92]  E. Rideal,et al.  Fuel Cells , 1958, Nature.

[93]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[94]  P. Gómez‐Romero,et al.  Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-benzimidazole) Membranes , 2004 .

[95]  Malcolm B. Polk,et al.  Rigid-Rod Polymers: Synthesis, Processing, Simulation, Structure, and Properties , 2003 .

[96]  Qingfeng Li,et al.  Cross-Linked Polybenzimidazole Membranes for Fuel Cells , 2007 .

[97]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[98]  M. Hickner,et al.  Alternative polymer systems for proton exchange membranes (PEMs). , 2004, Chemical reviews.

[99]  Jingli Luo,et al.  Propane fuel cells using phosphoric-acid-doped polybenzimidazole membranes. , 2005, The journal of physical chemistry. B.

[100]  J. Kerres,et al.  Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells , 1999 .

[101]  P. Stonehart,et al.  Carbon substrates for phosphoric acid fuel cell cathodes , 1984 .

[102]  Y. Yamazaki,et al.  Preparation and characterization of composite membranes composed of zirconium tricarboxybutylphosphonate and polybenzimidazole for intermediate temperature operation , 2005 .

[103]  V. Antonucci,et al.  Sulfonated polybenzimidazole membranes — preparation and physico-chemical characterization , 2001 .