Elastic softening and polarization memory in PZN-PT relaxor ferroelectrics | NOVA. The University of Newcastle's Digital Repository

Substantial elastic softening in the cubic phase of PZN-PT relaxor ferroelectric crystals is observed as a large hysteresis between the RUS frequencies from poled and depoled crystals. This is due to static switchable polar nanoregions (PNR) at T*, well below the conventional Burns temperature but ∼50 K above the ferroelectric transition. Elastic softening due to polarization of the PNR shows polarization memory through two phase transitions and is greater than the softening associated with polarization of the ferroelectric phases. This emphasizes that PNR dominate the material properties at all temperatures below T*.

[1]  D. Viehland,et al.  Interplay between static and dynamic polar correlations in relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2010, 1002.0716.

[2]  Guangyong Xu,et al.  Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor , 2006 .

[3]  Guangyong Xu,et al.  Phase instability induced by polar nanoregions in a relaxor ferroelectric system. , 2008, Nature materials.

[4]  Michael A. Carpenter,et al.  Grain size dependence of elastic anomalies accompanying the α–β phase transition in polycrystalline quartz , 2008 .

[5]  Brahim Dkhil,et al.  Phase transition at a nanometer scale detected by acoustic emission within the cubic phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 relaxor ferroelectrics. , 2007, Physical review letters.

[6]  J. L. Robertson,et al.  Diffuse Neutron Scattering Study of a Disordered Complex Perovskite Pb(Zn1/3Nb2/3)O3Crystal , 2001 .

[7]  Seiji Kojima,et al.  Hysteresis in acoustic properties of ferroelectric relaxor Pb[(Zn1/3Nb2/3)0.955Ti0.045]O3 single crystals studied by Brillouin and dielectric spectroscopies , 2006 .

[8]  Markus Roth,et al.  Acoustic emission study of phase transitions and polar nanoregions in relaxor-based systems: Application to the PbZn1/3Nb2/3O3 family of single crystals , 2006 .

[9]  George A. Samara,et al.  TOPICAL REVIEW: The relaxational properties of compositionally disordered ABO3 perovskites , 2003 .

[10]  Michael A. Carpenter,et al.  Elastic relaxations associated with the – transition in LaAlO3: III. Superattenuation of acoustic resonances , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  I. Jeong,et al.  Temperature evolution of short- and medium-range ionic correlations in relaxor ferroelectric[Pb(Zn1/3Nb2/3)O3]1−x[PbTiO3]x(x=0.05,0.12) , 2009 .

[12]  A. A. Bokov,et al.  Recent progress in relaxor ferroelectrics with perovskite structure , 2020, Progress in Advanced Dielectrics.

[13]  Ruyan Guo,et al.  Phase transformations in annealed PZN-4.5%PT single crystals , 2008 .

[14]  Peter M. Gehring,et al.  Electric-field effects on the diffuse scattering in Pb Zn 1/3 Nb 2/3 O 3 doped with 8% PbTi O 3 , 2004 .

[15]  Michael A. Carpenter,et al.  Acoustic dissipation associated with phase transitions in lawsonite, CaAl2Si2O7(OH)2·H2O , 2007 .

[16]  Rui Zhang,et al.  Complete set of properties of 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal with engineered domains , 2003 .

[17]  Erich H. Kisi,et al.  LETTER TO THE EDITOR: Temperature-induced phase transitions in the giant-piezoelectric-effect material PZN-4.5%PT , 2001 .

[18]  Jean Toulouse,et al.  The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning , 2008 .

[19]  J. S. Gardner,et al.  Two-component model of the neutron diffuse scattering in the relaxor ferroelectric PZN-4.5%PT , 2010, 1004.5406.

[20]  Kenji Uchino,et al.  Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system , 1981 .

[21]  Valentin Laguta,et al.  Field cooled and zero field cooled 207Pb NMR and the local structure of relaxor PbMg1/3Nb2/3O3. , 2003, Physical review letters.

[22]  F. H. Dacol,et al.  Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3 , 1983 .

[23]  Z. Ye,et al.  Relaxor Ferroelectric Complex Perovskites: Structure, Properties and Phase Transitions , 1998 .

[24]  D. Viehland,et al.  Neutron and x-ray diffraction study of cubic [111] field-cooled Pb(Mg1∕3Nb2∕3)O3 , 2007, 0712.0174.

[25]  Jean Toulouse,et al.  Temperature evolution of the relaxor dynamics in Pb ( Zn 1 ∕ 3 Nb 2 ∕ 3 ) O 3 : A critical Raman analysis , 2005 .

[26]  Seiji Kojima,et al.  Broadband light scattering of two relaxation processes in relaxor ferroelectric 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 single crystals , 2008 .

[27]  Seiji Kojima,et al.  Anomalous dispersion of the elastic constants at the phase transformation of thePbMg1∕3Nb2∕3O3relaxor ferroelectric , 2008 .

[28]  Z. Ye,et al.  Neutron Scattering Study of the Relaxor Ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 , 2003 .

[29]  Zuo-Guang Ye,et al.  Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric , 2006, Nature materials.

[30]  Seiji Kojima,et al.  Central peaks, acoustic modes, and the dynamics of polar nanoregions in Pb[(Zn1/3Nb2/3)xTi1−x]O3 single crystals studied by Brillouin spectroscopy , 2008 .

[31]  Guangyong Xu,et al.  Persistence and memory of polar nanoregions in a ferroelectric relaxor under an electric field , 2005 .

[32]  L. Eric Cross,et al.  Low‐Temperature Observation of Relaxor Ferroelectric Domains in Lead Zinc Niobate , 1995 .

[33]  P. Gehring,et al.  Reassessment of the Burns temperature and its relationship to the diffuse scattering, lattice dynamics, and thermal expansion in relaxor Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 , 2009, 0904.4234.