Optimization of composite structures subject to local stress constraints

Abstract An extension of current methodologies is introduced for optimization of graded microstructure subject to local stress criteria. The method is based on new multiscale stress criteria given by macrostress modulation functions. The modulation functions quantify the intensity of local stress fluctuations at the scale of the microstructure due to the imposed macroscopic stress. The methodology is illustrated for long cylindrical shafts reinforced with stiff cylindrical elastic fibers with generators parallel to the shaft. Examples are presented for shaft cross sections that possess reentrant corners typically seen in lap joints and junctions of struts. It is shown that the computational methodology delivers graded fiber microgeometries that provide overall structural rigidity while at the same time tempering the influence of stress concentrations near reentrant corners.

[1]  Alejandro R. Diaz,et al.  Optimal Material Layout in Three-Dimensional Elastic Structures Subjected to Multiple Loads* , 2000 .

[2]  R. Lipton,et al.  Homogenization and Design of Functionally Graded Composites for Stiffness and Strength , 2004 .

[3]  Ines Gloeckner,et al.  Variational Methods for Structural Optimization , 2002 .

[4]  Robert Lipton,et al.  Homogenization Theory and the Assessment of Extreme Field Values in Composites with Random Microstructure , 2004, SIAM J. Appl. Math..

[5]  L. Tartar Remarks on optimal design problems , 1994 .

[6]  B. Bourdin Filters in topology optimization , 2001 .

[7]  Pablo Pedregal,et al.  Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design , 2001 .

[8]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[9]  K. Lurie,et al.  Optimal Design of Gradient Fields with Applications to Electrostatics , 2000 .

[10]  Robert Lipton,et al.  Optimal design of gradient elds with applications to electro-statics , 2002 .

[11]  Andrej Cherkaev,et al.  Effective Characteristics of Composite Materials and the Optimal Design of Structural Elements , 1997 .

[12]  G. Papanicolaou,et al.  Les méthodes de l'homogénéisation : théorie et applications en physique , 1985 .

[13]  R. Kohn,et al.  Optimal design and relaxation of variational problems, III , 1986 .

[14]  Andrej Cherkaev,et al.  Optimal design of three-dimensional axisymmetric elastic structures , 1996 .

[15]  R. Lipton,et al.  Assessment of the local stress state through macroscopic variables , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Robert Lipton,et al.  Inverse homogenization and design of microstructure for pointwise stress control , 2006 .

[17]  N. Kikuchi,et al.  Solutions to shape and topology eigenvalue optimization problems using a homogenization method , 1992 .

[18]  Robert Lipton,et al.  Optimal lower bounds on the electric-field concentration in composite media , 2004 .

[19]  M. Bendsøe,et al.  Topology optimization of continuum structures with local stress constraints , 1998 .

[20]  Robert V. Kohn,et al.  Topics in the Mathematical Modelling of Composite Materials , 1997 .

[21]  N. Olhoff,et al.  An investigation concerning optimal design of solid elastic plates , 1981 .

[22]  G. Allaire,et al.  Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .

[23]  Robert Lipton,et al.  Design of functionally graded composite structures in the presence of stress constraints , 2002 .

[24]  G. Allaire,et al.  Topology optimization for minimum stress design with the homogenization method , 2004 .

[25]  Robert Lipton,et al.  Relaxation Through Homogenization for Optimal Design Problems with Gradient Constraints , 2002 .

[26]  Yury Grabovsky,et al.  Optimal Design Problems for Two-Phase Conducting Composites with Weakly Discontinuous Objective Functionals , 2001, Adv. Appl. Math..

[27]  C. S. Jog,et al.  Topology design with optimized, self‐adaptive materials , 1994 .

[28]  G. Alberti,et al.  CALCULUS OF VARIATIONS, HOMOGENIZATION AND CONTINUUM MECHANICS , 1994 .

[29]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[30]  L. Tartar Optimal Shape Design, Lecture Notes in Maths. 1740, A. Cellina & A. Ornelas eds, 47{156, Springer, 2000. An Introduction to the Homogenization Method in Optimal Design , 2000 .

[31]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[32]  Robert Lipton,et al.  Stress constrained $G$ closure and relaxation of structural design problems , 2004 .

[33]  Niels Olhoff,et al.  On optimum design of structures and materials , 1996 .

[34]  Robert Lipton,et al.  Bounds on the distribution of extreme values for the stress in composite materials , 2004 .

[35]  B. C. Chen,et al.  Composite material design of two‐dimensional structures using the homogenization design method , 2001 .

[36]  Konstantin A. Lurie,et al.  Applied Optimal Control Theory of Distributed Systems , 1993 .

[37]  Ole Sigmund,et al.  Design of materials with extreme thermal expansion using a three-phase topology optimization method , 1997, Smart Structures.