Output feedback stochastic nonlinear model predictive control for batch processes

Abstract Batch processes play a vital role in the chemical industry, but are difficult to control due to highly nonlinear behaviour and unsteady state operation. Nonlinear model predictive control (NMPC) is therefore one of the few promising approaches. Batch process models are however often affected by uncertainties, which can lower the performance and cause constraint violations. In this paper we propose a shrinking horizon NMPC algorithm accounting for these uncertainties to optimize a probabilistic objective subject to chance constraints. At each sampling time only noisy output measurements are observed. Polynomial chaos expansions (PCE) are used to express the probability distributions of the uncertainties, which are updated at each sampling time using a PCE state estimator and exploited in the NMPC formulation. The approach considers feedback by using time-invariant linear feedback gains, which alleviates the conservativeness of the approach. The NMPC scheme is verified on a polymerization semi-batch reactor case study.

[1]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[2]  Dimitri P. Bertsekas,et al.  Dynamic programming and optimal control, 3rd Edition , 2005 .

[3]  Hong Jang,et al.  A robust NMPC scheme for semi-batch polymerization reactors , 2016 .

[4]  John Lygeros,et al.  NMPC for Complex Stochastic Systems Using a Markov Chain Monte Carlo Approach , 2007 .

[5]  Vinay A. Bavdekar,et al.  A polynomial chaos-based nonlinear Bayesian approach for estimating state and parameter probability distribution functions , 2016, 2016 American Control Conference (ACC).

[6]  Joel A. Paulson,et al.  Lyapunov-based stochastic nonlinear model predictive control: Shaping the state probability distribution functions , 2015, 2016 American Control Conference (ACC).

[7]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[8]  David Q. Mayne,et al.  Tube‐based robust nonlinear model predictive control , 2011 .

[9]  Ming Xin,et al.  Sparse-grid quadrature nonlinear filtering , 2012, Autom..

[10]  Alberto Bemporad,et al.  Robustness in Identification and Control , 1999 .

[11]  Shabnam Rasoulian,et al.  A robust nonlinear model predictive controller for a multiscale thin film deposition process , 2015 .

[12]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[13]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[14]  Torstein Thode Kristoffersen,et al.  Model predictive control and extended Kalman filter for a gas-liquid cylindrical cyclone , 2017, 2017 IEEE Conference on Control Technology and Applications (CCTA).

[15]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[16]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[17]  C. Georgakis,et al.  Nonlinear model predictive control of end-use properties in batch reactors , 2002 .

[18]  Anh Tran,et al.  Modeling and Control of Ibuprofen Crystal Growth and Size Distribution , 2015 .

[19]  Jay H. Lee,et al.  Extended Kalman Filter Based Nonlinear Model Predictive Control , 1993, 1993 American Control Conference.

[20]  Z. Nagy,et al.  Robust nonlinear model predictive control of batch processes , 2003 .

[21]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[22]  Sebastian Engell,et al.  Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty , 2013 .

[23]  Alberto Bemporad,et al.  Stochastic model predictive control for constrained discrete-time Markovian switching systems , 2014, Autom..

[24]  Richard D. Braatz,et al.  Output feedback model predictive control with probabilistic uncertainties for linear systems , 2016, 2016 American Control Conference (ACC).

[25]  Lars Imsland,et al.  Stochastic NMPC of Batch Processes Using Parameterized Control Policies , 2018 .

[26]  Zoltan K. Nagy,et al.  Real-Time Implementation of Nonlinear Model Predictive Control of Batch Processes in an Industrial Framework , 2007 .

[27]  Miltiadis Boboulos Automation and Robotics , 2010 .

[28]  A. Mesbah,et al.  Stochastic Model Predictive Control: An Overview and Perspectives for Future Research , 2016, IEEE Control Systems.

[29]  Richard D. Braatz,et al.  Stochastic nonlinear model predictive control with probabilistic constraints , 2014, 2014 American Control Conference.

[30]  Robert R. Bitmead,et al.  Particle Model Predictive Control: Tractable Stochastic Nonlinear Output-Feedback MPC , 2016, 1612.00505.

[31]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[32]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[33]  Lorenz T. Biegler,et al.  Reactor modeling and recipe optimization of polyether polyol processes: Polypropylene glycol , 2013 .

[34]  Stefan Streif,et al.  Stochastic Nonlinear Model Predictive Control with Efficient Sample Approximation of Chance Constraints , 2014, ArXiv.

[35]  Lars Imsland,et al.  Economic Stochastic Model Predictive Control Using the Unscented Kalman Filter , 2018 .

[36]  Marco F. Huber,et al.  Stochastic Nonlinear Model Predictive Control based on Gaussian Mixture Approximations , 2009 .

[37]  Vinay A. Bavdekar,et al.  Stochastic Nonlinear Model Predictive Control with Joint Chance Constraints , 2016 .

[38]  Marcus Reble,et al.  Output feedback stochastic nonlinear model predictive control of a polymerization batch process , 2019, 2019 18th European Control Conference (ECC).

[39]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[40]  Grigoriy Kimaev,et al.  A comparison of efficient uncertainty quantification techniques for stochastic multiscale systems , 2017 .

[41]  Jun Yan,et al.  Incorporating state estimation into model predictive control and its application to network traffic control , 2005, Autom..

[42]  Mazen Alamir,et al.  On the Use of Supervised Clustering in Stochastic NMPC Design , 2018, IEEE Transactions on Automatic Control.

[43]  P. D. Picton Real-time implementation of an optophone , 1997 .

[44]  Prashant Mhaskar,et al.  Output-Feedback Lyapunov-Based Predictive Control of Stochastic Nonlinear Systems , 2018, IEEE Transactions on Automatic Control.

[45]  Lorenz T. Biegler,et al.  Model-based On-Line Optimization Framework for Semi-batch Polymerization Reactors , 2015 .

[46]  SteinMichael Large sample properties of simulations using latin hypercube sampling , 1987 .

[47]  T. Singh,et al.  Polynomial-chaos-based Bayesian approach for state and parameter estimations , 2013 .

[48]  Joel A. Paulson,et al.  An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems , 2019 .

[49]  Moritz Diehl,et al.  CasADi: a software framework for nonlinear optimization and optimal control , 2018, Mathematical Programming Computation.

[50]  Lars Imsland,et al.  Stochastic Nonlinear Model Predictive Control Using Gaussian Processes , 2018, 2018 European Control Conference (ECC).

[51]  A. O'Hagan,et al.  Polynomial Chaos : A Tutorial and Critique from a Statistician ’ s Perspective , 2013 .

[52]  Zoltan K. Nagy,et al.  Real‐time control of a semi‐industrial fed‐batch evaporative crystallizer using different direct optimization strategies , 2011 .

[53]  Lorenzo Fagiano,et al.  Nonlinear stochastic model predictive control via regularized polynomial chaos expansions , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[54]  Sang-Hoon Lee,et al.  A comparative study of uncertainty propagation methods for black-box-type problems , 2008 .

[55]  Yi Cao A FORMULATION OF NONLINEAR MODEL PREDICTIVE CONTROL USING AUTOMATIC DIFFERENTIATION , 2005 .

[56]  Lorenz T. Biegler,et al.  Reactor Modeling and Recipe Optimization of Ring-Opening Polymerization: Block Copolymers , 2014 .

[57]  R. Bhattacharya,et al.  Nonlinear estimation with polynomial chaos and higher order moment updates , 2010, Proceedings of the 2010 American Control Conference.

[58]  C. Scherer,et al.  A game theoretic approach to nonlinear robust receding horizon control of constrained systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[59]  Lars Imsland,et al.  Economic stochastic nonlinear model predictive control of a semi-batch polymerization reaction , 2019, IFAC-PapersOnLine.