Time Optimal Path-Tracking Control of Kinematically Redundant Manipulators

In this study, we propose a time optimal control scheme for kinematically redundant manipulators to track a predefined geometric path, subject to joint torque limits. The scheme can make full use of redundancy to increase the path-tracking velocity, and the time optimal trajectory planning problem is solved by using the phase-plane analysis and the linear programming technique. Computer simulation is also executed on a three-link planar rotary manipulator to show that, 1) the redundancy of the manipulator is fully used to increase the path-tracking velocity, and 2) redundant joints plus one more joint use their bound values of torque all the time while the time optimal path-tracking task is performed.

[1]  Matthew R. James,et al.  Robust and accurate time-optimal path-tracking control for robot manipulators , 1997, IEEE Trans. Robotics Autom..

[2]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[3]  Friedrich Pfeiffer,et al.  A concept for manipulator trajectory planning , 1987, IEEE J. Robotics Autom..

[4]  J. Hollerbach Dynamic Scaling of Manipulator Trajectories , 1983, 1983 American Control Conference.

[5]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[6]  Miroslaw Galicki,et al.  Time-optimal controls of kinematically redundant manipulators with geometric constraints , 2000, IEEE Trans. Robotics Autom..

[7]  Shugen Ma,et al.  A balancing technique to stabilize local torque optimization solution of redundant manipulators , 1996, J. Field Robotics.

[8]  Shigeo Hirose,et al.  Efficient Redundancy Control of Redundant Manipulators , 1996 .

[9]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[10]  Yaobin Chen,et al.  A proof of the structure of the minimum-time control law of robotic manipulators using a Hamiltonian formulation , 1990, IEEE Trans. Robotics Autom..

[11]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[12]  Z. Shiller,et al.  On the optimal control of robotic manipulators with actuator and end-effector constraints , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[13]  Bernard Roth,et al.  Analysis of Multifingered Hands , 1986 .

[14]  D. E. Whitney,et al.  Historical Perspective and State of the Art in Robot Force Control , 1987 .

[15]  Shugen Ma Time optimal control of manipulators with limit heat characteristics of actuators , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[16]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[17]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[18]  Leon Zlajpah,et al.  On time optimal path control of manipulators with bounded joint velocities and torques , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[19]  J. Bobrow,et al.  Time-Optimal Control of Robotic Manipulators Along Specified Paths , 1985 .

[20]  Z. Shiller,et al.  Computation of Path Constrained Time Optimal Motions With Dynamic Singularities , 1992 .

[21]  Han-Pang Huang,et al.  Time-optimal control for a robotic contour following problem , 1988, IEEE J. Robotics Autom..

[22]  Miroslaw Galicki,et al.  The Planning of Robotic Optimal Motions in the Presence of Obstacles , 1998, Int. J. Robotics Res..

[23]  Shugen Ma Time-optimal control of robotic manipulators with limit heat characteristics of the actuator , 2002, Adv. Robotics.