Lindemann measures for the solid-liquid phase transition.

A set of Lindemann measures, based on positional deviations or return distances, defined with respect to mechanically stable inherent structure configurations, is applied to understand the solid-liquid phase transition in a Lennard-Jones-type system. The key quantity is shown to be the single-particle return distance-squared distribution. The first moment of this distribution is related to the Lindemann parameter which is widely used to predict the melting temperature of a variety of solids. The correlation of the single-particle return distance and local bond orientational order parameter in the liquid phase provides insights into mechanisms for melting. These generalized Lindemann measures, especially the lower order moments of the single-particle return distance distribution, show clear signatures of the transition of the liquid from the stable to the metastable, supercooled regime and serve as landscape-based indicators of the thermodynamic freezing transition for the Lennard-Jones-type system investigated.

[1]  P. Gumbsch,et al.  Melting mechanisms at the limit of superheating. , 2001, Physical review letters.

[2]  G. Petsko,et al.  Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. , 1993, Biochemistry.

[3]  A. Strachan,et al.  Vibrational density of states and Lindemann melting law. , 2005, The Journal of chemical physics.

[4]  M. Karplus,et al.  Native proteins are surface-molten solids: application of the Lindemann criterion for the solid versus liquid state. , 1999, Journal of molecular biology.

[5]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[6]  C. Chakravarty,et al.  Diffusivity, excess entropy, and the potential-energy landscape of monatomic liquids. , 2006, The Journal of chemical physics.

[7]  Julius Jellinek,et al.  Energy Landscapes: With Applications to Clusters, Biomolecules and Glasses , 2005 .

[8]  P. Attard On the density of volume states in the isobaric ensemble , 1995 .

[9]  M. Ross,et al.  Generalized Lindemann Melting Law , 1969 .

[10]  D. Kofke,et al.  Thermodynamic and structural properties of model systems at solid-fluid coexistence: I. Fcc and bcc soft spheres , 1995 .

[11]  A. Lawson An improved Lindemann melting rule , 2001 .

[12]  Thomas A. Weber,et al.  Inherent structures and distribution functions for liquids that freeze into bcc crystals , 1984 .

[13]  Pablo G. Debenedetti,et al.  Supercooled liquids and the glass transition , 2001, Nature.

[14]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[15]  Charusita Chakravarty,et al.  Path integral simulations of quantum Lennard-Jones solids , 2002 .

[16]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[17]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[18]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[19]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[20]  F. Stillinger,et al.  Multidimensional geometric aspects of the solid–liquid transition in simple substances , 1985 .

[21]  Daan Frenkel,et al.  Free energy changes on freezing and melting ductile metals , 1993 .

[22]  F. Stillinger,et al.  Generating inherent structures of liquids: comparison of local minimization algorithms. , 2005, The Journal of chemical physics.

[23]  F. Stillinger,et al.  Lindemann melting criterion and the Gaussian core model , 1980 .

[24]  Thomas A. Weber,et al.  Dynamics of structural transitions in liquids , 1983 .

[25]  J. Gilvarry The Lindemann and Grüneisen Laws , 1956 .

[26]  David J. Wales,et al.  Energy landscapes of model glasses. II. Results for constant pressure , 2003 .

[27]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[28]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[29]  George A. Gellert,et al.  Hard sell for the Sun , 1998, Nature.

[30]  J. G. Dash History of the search for continuous melting , 1999 .

[31]  D. Kofke Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line , 1993 .

[32]  N. Ghosh,et al.  Melting of atomic solids: effect of range and softness of interaction potentials , 2004 .

[33]  Jin,et al.  Superheating of confined Pb thin films , 2000, Physical review letters.

[34]  U. Gasser,et al.  Local order in a supercooled colloidal fluid observed by confocal microscopy , 2002 .

[35]  D. Kofke,et al.  Thermodynamic and structural properties of model systems at solid-fluid coexistence: I. Fcc and bcc soft spheres , 1995 .

[36]  H. Gleiter,et al.  Superheating of metal crystals , 1986 .