On the use of Perfectly Matched Layers at corners for scattering problems with sign-changing coefficients

We investigate in a 2D setting the scattering of time-harmonic electromagnetic waves by a plasmonic device, represented as a non-dissipative bounded and penetrable obstacle with a negative permittivity. Using the T-coercivity approach, we first prove that the problem is well-posed in the classical framework H loc 1 if the negative permittivity does not lie in some critical interval whose definition depends on the shape of the device. When the latter has corners, for values inside the critical interval, unusual strong singularities for the electromagnetic field can appear. In that case, well-posedness is obtained by imposing a radiation condition at the corners to select the outgoing black-hole plasmonic wave, that is the one which carries energy towards the corners. A simple and systematic criterion is given to define what is the outgoing solution. Finally, we propose an original numerical method based on the use of Perfectly Matched Layers at the corners. We emphasize that it is necessary to design an ad hoc technique because the field is too singular to be captured with standard finite element methods.

[1]  Ross C. McPhedran,et al.  Spectral super-resolution in metamaterial composites , 2011, 1105.5012.

[2]  Jean-Pierre Berenger,et al.  An effective PML for the absorption of evanescent waves in waveguides , 1998 .

[3]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[4]  Alexandra Boltasseva,et al.  Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. , 2008, Optics express.

[5]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[6]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[7]  Lucas Chesnel,et al.  T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .

[8]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[9]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..

[10]  Franck Assous,et al.  Numerical Solution to the Time-Dependent Maxwell Equations in Two-Dimensional Singular Domains , 2000 .

[11]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[12]  Petri Ola,et al.  Remarks on a Transmission Problem , 1995 .

[13]  Lucas Chesnel,et al.  T-Coercivity for the Maxwell Problem with Sign-Changing Coefficients , 2014 .

[14]  Lucas Chesnel,et al.  Strongly oscillating singularities for the interior transmission eigenvalue problem , 2013 .

[15]  Lucas Chesnel,et al.  T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients , 2013, Numerische Mathematik.

[16]  Monique Dauge,et al.  Non-coercive transmission problems in polygonal domains. -- Problèmes de transmission non coercifs dans des polygones , 2011, 1102.1409.

[17]  Lucas Chesnel,et al.  RADIATION CONDITION FOR A NON-SMOOTH INTERFACE BETWEEN A DIELECTRIC AND A METAMATERIAL , 2013 .

[18]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[19]  David R. Smith,et al.  Metamaterials and Negative Refractive Index , 2004, Science.

[20]  Jaak Peetre,et al.  Another approach to elliptic boundary problems , 1961 .

[21]  Lifeng Li,et al.  Hypersingularity, electromagnetic edge condition, and an analytic hyperbolic wedge model. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  Serge Nicaise,et al.  A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients , 2010, J. Comput. Appl. Math..

[23]  Michael V Berry,et al.  Hermitian boundary conditions at a Dirichlet singularity: the Marletta--Rozenblum model , 2009 .

[24]  Lucas Chesnel,et al.  Two-dimensional Maxwell's equations with sign-changing coefficients , 2014 .

[25]  Hoai-Minh Nguyen,et al.  Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients , 2015, 1507.01730.

[26]  Christophe Hazard,et al.  A Singular Field Method for Maxwell's Equations: Numerical Aspects for 2D Magnetostatics , 2002, SIAM J. Numer. Anal..

[27]  Anatoly V. Zayats,et al.  Plasmonic waveguide as an efficient transducer for high-density data storage , 2009 .

[28]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[29]  Heinz Raether,et al.  BOOKS: Pattern Recognition in Practice: Proceedings, International Workshop, Amsterdam, 21-23 May 1980; Optical Fiber Systems and Their Components: An Introduction; Excitation of Plasmons and Interband Transitions by Electrons. , 1980, Applied optics.

[30]  Patrick Ciarlet,et al.  Mesh requirements for the finite element approximation of problems with sign-changing coefficients , 2018, Numerische Mathematik.

[31]  Franck Assous,et al.  Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method , 2003 .

[32]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[33]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[34]  Lucas Chesnel,et al.  A curious instability phenomenon for a rounded corner in presence of a negative material , 2013, Asymptot. Anal..

[35]  Patrick Ciarlet,et al.  Time harmonic wave diffraction problems in materials with sign-shifting coefficients , 2010, J. Comput. Appl. Math..

[36]  Armin Lechleiter,et al.  Volume integral equations for scattering from anisotropic diffraction gratings , 2012, 1201.0743.

[37]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[38]  Lucas Chesnel,et al.  Compact Imbeddings in Electromagnetism with Interfaces between Classical Materials and Metamaterials , 2011, SIAM J. Math. Anal..

[39]  Victor Kalvin Perfectly Matched Layers for Diffraction Gratings in Inhomogeneous Media. Stability and Error Estimates , 2011, SIAM J. Numer. Anal..

[40]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[41]  Fioralba Cakoni,et al.  Qualitative Methods in Inverse Scattering Theory: An Introduction , 2005 .

[42]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[43]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[44]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[45]  Barna A. Szabó,et al.  Extracting edge flux intensity functions for the Laplacian , 2002 .

[46]  S. C. Brenner,et al.  Hodge decomposition for two‐dimensional time‐harmonic Maxwell's equations: impedance boundary condition , 2017 .

[47]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.