Interfacial-Redox-Induced Tuning of Superconductivity in YBa2Cu3O7-δ.

Solid state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here we report a simple, scalable approach allowing for total control of the superconducting transition in optimally doped YBa2Cu3O7-δ (YBCO) films via a chemically-driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective ionic control of superconductivity in oxides, an interface induced effect that goes well into the quasi-bulk regime, opening up possibilities for electric field manipulation.

[1]  C. Leighton Electrolyte-based ionic control of functional oxides , 2018, Nature Materials.

[2]  Geoffrey S. D. Beach,et al.  Magneto-ionic control of magnetism using a solid-state proton pump , 2018, Nature Materials.

[3]  A. Mehta,et al.  Ionic tuning of cobaltites at the nanoscale , 2018, Physical Review Materials.

[4]  Hua Zhou,et al.  Ion-gel-gating-induced oxygen vacancy formation in epitaxial L a 0.5 S r 0.5 Co O 3 -δ films from in operando x-ray and neutron scattering , 2017 .

[5]  T. Venkatesan,et al.  The Mechanism of Electrolyte Gating on High-Tc Cuprates: The Role of Oxygen Migration and Electrostatics. , 2017, ACS nano.

[6]  Qinghua Zhang,et al.  Electric-field control of tri-state phase transformation with a selective dual-ion switch , 2017, Nature.

[7]  Kristy J. Kormondy,et al.  Scavenging of oxygen from SrTiO3 during oxide thin film deposition and the formation of interfacial 2DEGs , 2017 .

[8]  J. Cezar,et al.  In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X , 2016, Proceedings of the National Academy of Sciences.

[9]  N. Browning,et al.  Tuning interfacial exchange interactions via electronic reconstruction in transition-metal oxide heterostructures , 2016 .

[10]  J. Borchers,et al.  Beyond the Interface Limit: Structural and Magnetic Depth Profiles of Voltage-Controlled Magneto-Ionic Heterostructures , 2016, 1605.07209.

[11]  J. Borchers,et al.  Controllable positive exchange bias via redox-driven oxygen migration , 2016, Nature Communications.

[12]  S. Pennycook,et al.  Emerging Diluted Ferromagnetism in High‐T c Superconductors Driven by Point Defect Clusters , 2016, Advanced science.

[13]  J. Borchers,et al.  Reversible Control of Magnetism in La0.67Sr0.33MnO3 through Chemically-Induced Oxygen Migration , 2016 .

[14]  Chuong Huynh,et al.  Nano Josephson superconducting tunnel junctions in YBa2Cu3O(7-δ) directly patterned with a focused helium ion beam. , 2015, Nature nanotechnology.

[15]  R. Dynes,et al.  YBa2Cu3O7−δ superconducting quantum interference devices with metallic to insulating barriers written with a focused helium ion beam , 2015 .

[16]  C. Chu,et al.  Hole-doped cuprate high temperature superconductors , 2015, 1502.04686.

[17]  Shufeng Zhang,et al.  Reversible control of Co magnetism by voltage-induced oxidation. , 2014, Physical review letters.

[18]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[19]  E. Schierle,et al.  Resonant x-ray scattering study of charge-density wave correlations in YBa 2 Cu 3 O 6 + x , 2014, 1406.1595.

[20]  G. Beach,et al.  Voltage-controlled domain wall traps in ferromagnetic nanowires. , 2013, Nature nanotechnology.

[21]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[22]  M. Kawasaki,et al.  Collective bulk carrier delocalization driven by electrostatic surface charge accumulation , 2012, Nature.

[23]  Uwe Bauer,et al.  Electric field control of domain wall propagation in Pt/Co/GdOx films , 2012 .

[24]  F. Heinrich,et al.  Phase-sensitive specular neutron reflectometry for imaging the nanometer scale composition depth profile of thin-film materials , 2012 .

[25]  Shameek Bose,et al.  Electrostatic control of the evolution from a superconducting phase to an insulating phase in ultrathin YBa₂Cu₃O(7-x) films. , 2011, Physical review letters.

[26]  J. Misewich,et al.  Superconductor–insulator transition in La2 − xSrxCuO4 at the pair quantum resistance , 2011, Nature.

[27]  J. Clarke,et al.  Very large scale integration of nanopatterned YBa2Cu3O7-delta Josephson junctions in a two-dimensional array. , 2009, Nano letters.

[28]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[29]  S. Ogale,et al.  Interface and defect structures in YBa2Cu3O7−δ and Nb : SrTiO3 heterojunction , 2007 .

[30]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[31]  K. Kawamura,et al.  Lattice expansion upon reduction of perovskite-type LaMnO3 with oxygen-deficit nonstoichiometry , 2003 .

[32]  Masanobu Kusunoki,et al.  High-quality Y-Ba-Cu-O thin films by PLD-ready for market applications , 2001 .

[33]  H. Zhai,et al.  Effect of interfacial strain on critical temperature of YBa2Cu3O7−δ thin films , 2000 .

[34]  F. Baudenbacher,et al.  OBSERVATION OF SMALL INTERFACIAL STRAINS IN YBA2CU3OX SUB-MICRON-THICK FILMS GROWN ON SRTIO3 SUBSTRATES , 1998 .

[35]  J. Villégier,et al.  ORTHORHOMBIC-TETRAGONAL TRANSITION IN TWIN-FREE (110) YBA2CU3O7 FILMS , 1998 .

[36]  Julia M. Phillips,et al.  Substrate selection for high‐temperature superconducting thin films , 1996 .

[37]  Simmons,et al.  Site-specific and doping-dependent electronic structure of YBa2Cu3Ox probed by O 1s and Cu 2p x-ray-absorption spectroscopy. , 1994, Physical review. B, Condensed matter.

[38]  S. T. Tang,et al.  Twin formation due to irradiation of energetic electron beam in high-temperature superconductors of In- and Sb-doped YBCO , 1993 .

[39]  A. Navrotsky,et al.  Thermochemistry of the Y_2O_3–BaO–Cu–O system , 1992 .

[40]  R. Buckley,et al.  General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors , 1991 .

[41]  R. Gruehn,et al.  Oxygen mobility in YBa2Cu3O7-x: a TEM and HRTEM investigation , 1990 .

[42]  T. Venkatesan,et al.  Defect structure of laser deposited Y-Ba-Cu-O thin films on single crystal MgO substrate , 1990 .

[43]  D. Mitzi,et al.  Interaction of overlayers of Al and Rb with single‐crystalline surfaces of Bi2Sr2CaCu2O8 , 1990 .

[44]  T. Venkatesan,et al.  Direct Observation of Structural Defects in Laser-Deposited Superconducting Y-Ba-Cu-O Thin Films , 1990, Science.

[45]  Budai,et al.  X-ray study of in-plane epitaxy of YBa2Cu3Ox thin films. , 1989, Physical review. B, Condensed matter.

[46]  Scott,et al.  Eight new high-temperature superconductors with the 1:2:4 structure. , 1989, Physical review. B, Condensed matter.

[47]  W. Pickett Electronic structure of the high-temperature oxide superconductors , 1989 .

[48]  P. K. Gallagher,et al.  Structural anomalies at the disappearance of superconductivity in Ba2YCu3O7−δ: Evidence for charge transfer from chains to planes , 1988 .

[49]  Yongli Gao,et al.  Photoemission and inverse photoemission studies of La adatom interactions with YBa2Cu3O6.9 , 1988 .

[50]  H. Meyer,et al.  Titanium‐oxygen reaction at the Ti/La1.85Sr0.15CuO4 interface , 1987 .

[51]  Yongli Gao,et al.  Reaction and intermixing at metal‐superconductor interfaces: Fe/YBa2Cu3O6.9 , 1987 .

[52]  A. Bianconi,et al.  Localization of Cu 3d levels in the high Tc superconductor YBa2Cu3O∼7 by Cu 2p X-ray photoelectron spectroscopy , 1987 .

[53]  Weaver,et al.  Oxygen withdrawal, copper valency, and interface reaction for Fe/La1.85Sr0.15CuO4. , 1987, Physical review. B, Condensed matter.

[54]  C. Rizzoli,et al.  Crystal structure of the YBa2Cu3O7 superconductor by single-crystal X-ray diffraction , 1987, Nature.

[55]  D. Murphy,et al.  Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba2YCu , 1987, Physical review letters.

[56]  R. Dynes,et al.  Very Large Scale Integration of Nano-patterned YBa 2 Cu 3 O 7 − δ Josephson Junctions in a Two-dimensional Array , 2009 .

[57]  M. Aprili,et al.  Tunneling spectroscopy of the quasiparticle Andreev bound state in ion-irradiated YBa 2 Cu 3 O 7-δ /Pb junctions , 1998 .

[58]  S. W. Goodyear,et al.  Physical vapour deposition techniques for the growth of YBa2Cu3O7 thin films , 1990 .

[59]  Weaver,et al.  Cu-induced surface disruption of La1.85Sr0.15CuO4. , 1988, Physical review. B, Condensed matter.

[60]  L. Morss,et al.  Thermochemistry and high temperature thermodynamic properties of rare earth-alkaline earth-copper oxide superconductors. [LaâCuOâ; La/sub 1. 85/Sr/sub 0. 15/CuOâ; Y BaâCuâO/sub y/] , 1987 .

[61]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[62]  Š.,et al.  Bulk Superconductivity at 91 K in Single-Phase Oxygen-Deficient Perovskite Ba 2 YCu 309 — , 2022 .