The representation dimension of domestic weakly symmetric algebras

Auslander’s representation dimension measures how far a finite dimensional algebra is away from being of finite representation type. In [1], M. Auslander proved that a finite dimensional algebra A is of finite representation type if and only if the representation dimension of A is at most 2. Recently, R. Rouquier proved that there are finite dimensional algebras of an arbitrarily large finite representation dimension. One of the exciting open problems is to show that all finite dimensional algebras of tame representation type have representation dimension at most 3. We prove that this is true for all domestic weakly symmetric algebras over algebraically closed fields having simply connected Galois coverings.

[1]  A. Skowroński,et al.  Weakly symmetric algebras of Euclidean type , 2005 .

[2]  T. Holm The representation dimension of Schur algebras: the tame case , 2004 .

[3]  T. Holm,et al.  Derived equivalence classification of weakly symmetric algebras of Euclidean type , 2004 .

[4]  A. Skowroński,et al.  Symmetric special biserial algebras of euclidean type , 2003 .

[5]  K. Erdmann,et al.  Radical embeddings and representation dimension , 2002, math/0210362.

[6]  O. Iyama Finiteness of representation dimension , 2002 .

[7]  Changchang Xi Representation Dimension and Quasi-hereditary Algebras , 2002 .

[8]  Kiyoshi Igusa,et al.  ON THE FINITISTIC GLOBAL DIMENSION CONJECTURE FOR ARTIN ALGEBRAS , 2002 .

[9]  H. Krause,et al.  Stable Equivalence and Generic Modules , 2000 .

[10]  H. Lenzing,et al.  On selfinjective algebras of Euclidean type , 1999 .

[11]  H. Krause Stable equivalence preserves representation type , 1997 .

[12]  A. Schofield TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .

[13]  J. Rickard Derived categories and stable equivalence , 1989 .

[14]  A. Skowronski Selfinjective algebras of polynomial growth , 1989 .

[15]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[16]  C. Ringel Tame Algebras and Integral Quadratic Forms , 1985 .

[17]  Dieter Happel,et al.  Minimal algebras of infinite representation type with preprojective component , 1983 .

[18]  A. Skowroński,et al.  Representation-finite biserial algebras. , 1983 .