Minimal generator sets for finitely generated shift-invariant subspaces of L2(Rn)☆

Abstract Let S be a shift-invariant subspace of L 2 ( R n ) defined by N generators and suppose that its length L, the minimal number of generators of S, is smaller than N. Then we show that at least one reduced family of generators can always be obtained by a linear combination of the original generators, without using translations. In fact, we prove that almost every such combination yields a new generator set. On the other hand, we construct an example where any rational linear combination fails.

[1]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[2]  Marcin Bownik The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .

[3]  R. Jia Shift-invariant spaces on the real line , 1997 .

[4]  The wavelet dimension function is the trace function of a shift-invariant system , 2002 .

[5]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family , 2002 .

[6]  DETERMINING SETS OF SHIFT INVARIANT SPACES , 2003 .

[7]  An Abstract Interpretation of the Wavelet Dimension Function Using Group Representations , 2000 .

[8]  D. Larson,et al.  Wandering Vectors for Unitary Systems and Orthogonal Wavelets , 1998 .

[9]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[10]  A. Ron,et al.  Frames and Stable Bases for Shift-Invariant Subspaces of L2(ℝd) , 1995, Canadian Journal of Mathematics.

[11]  GENERAL EXISTENCE THEOREMSFOR ORTHONORMAL WAVELETS , 2007 .

[12]  H. Radjavi,et al.  Existence of Invariant and Hyperinvariant Subspaces , 1973 .

[13]  DETERMINING SETS OF SHIFT INVARIANT SPACES , 2003 .

[14]  L. Baggett,et al.  General Existence Theorems for Orthonormal Wavelets, an Abstract Approach , 1995 .

[15]  R. DeVore,et al.  Approximation from shift-invariant subspaces of ₂(^{}) , 1994 .

[16]  R. DeVore,et al.  Approximation from Shift-Invariant Subspaces of L 2 (ℝ d ) , 1994 .

[17]  R. Jia Stability of the Shifts of a Finite Number of Functions , 1998 .

[18]  A. Ron A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .

[19]  Demetrio Labate,et al.  A unified characterization of reproducing systems generated by a finite family, II , 2002 .

[20]  Applications of the Wavelet Multiplicity Function , 1999, math/9909132.

[21]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[22]  Marcin Bownik,et al.  A Characterization of Dimension Functions of Wavelets , 2001 .

[23]  Marcin Bownik,et al.  The Spectral Function of Shift-Invariant Spaces , 2003 .

[24]  E. Weber Frames and Single Wavelets for Unitary Groups , 2002, Canadian Journal of Mathematics.