Error analysis of nuclear mass fits

We discuss the least-squares and linear-regression methods, which are relevant for a reliable determination of good nuclear-mass-model parameter sets and their errors. In this perspective, we define exact and inaccurate models and point out differences in using the standard error analyses for them. As an illustration, we use simple analytic models for nuclear binding energies and study the validity and errors of models' parameters and uncertainties of its mass predictions. In particular, we show explicitly the influence of mass-number-dependent weights on uncertainties of liquid-drop global parameters.

[1]  D. Lunney,et al.  Recent trends in the determination of nuclear masses , 2003 .

[2]  Werner,et al.  Mean-field description of ground-state properties of drip-line nuclei: Shell-correction method. , 1994, Physical review. C, Nuclear physics.

[3]  M. Fukugita,et al.  Light hadron spectrum and quark masses from quenched lattice QCD , 2002, hep-lat/0206009.

[4]  S. C. Pieper,et al.  Quantum Monte Carlo calculations of light nuclei. , 1998, nucl-th/0103005.

[5]  Nuclear masses set bounds on quantum chaos. , 2005, Physical review letters.

[6]  George F. Bertsch,et al.  Fitting theories of nuclear binding energies , 2005 .

[7]  A. H. Wapstra,et al.  The 1995 update to the atomic mass evaluation , 1995 .

[8]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[9]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[10]  Robert L. Mason,et al.  Regression Analysis and Its Application: A Data-Oriented Approach. , 1982 .

[11]  V. I. Kostin,et al.  Singular Value Decomposition , 1993 .

[12]  S. Goriely,et al.  Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VII. Simultaneous fits to masses and fission barriers , 2007 .

[13]  M. Kirson Mutual influence of terms in a semi-empirical mass formula , 2008 .

[14]  Compressibility, effective mass and density dependence in skyrme forces , 2003, nucl-th/0309012.

[15]  I. Morales,et al.  Nuclear masses and the number of valence nucleons , 2008 .

[16]  S. Weisberg Applied Linear Regression: Weisberg/Applied Linear Regression 3e , 2005 .

[17]  S. Weisberg Applied Linear Regression , 1981 .

[18]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[19]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[20]  R. Gunst Regression analysis and its application , 1980 .

[21]  M. Kortelainen,et al.  Dependence of single-particle energies on coupling constants of the nuclear energy density functional , 2008, 0803.2291.

[22]  A. H. Wapstra,et al.  The 1993 atomic mass evaluation: (I) Atomic mass table , 1993 .

[23]  Adrian A. Husain Ark , 2010 .

[24]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[25]  William G. Cochran,et al.  Principles of regression analysis , 1961 .