Alexandrite laser in Q-switched single longitudinal mode operation pumped by a fiber-coupled diode module
暂无分享,去创建一个
Michael Strotkamp | Bernd Jungbluth | Hans-Dieter Hoffmann | Reinhart Poprawe | Josef Höffner | Alexander Munk | H. Hoffmann | R. Poprawe | J. Höffner | A. Munk | M. Strotkamp | B. Jungbluth
[1] M. Traub,et al. Diode-pumped Q-switched Alexandrite laser in single longitudinal mode operation with Watt-level output power. , 2018, Optics letters.
[2] M. Damzen,et al. Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation. , 2016, Optics express.
[3] M. Damzen,et al. Unidirectional single-frequency operation of a continuous-wave Alexandrite ring laser with wavelength tunability. , 2018, Optics express.
[4] Jack A. McKay,et al. Diode-pumped alexandrite laser for DIAL and Doppler lidar , 1997, Optics & Photonics.
[5] F. Lübken,et al. Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78°N) , 2007 .
[6] Gary E. Thomas,et al. Small‐scale temperature variations in the vicinity of NLC: Experimental and model results , 2001 .
[7] Jian Zhao,et al. Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 1. Vertical wavelengths, periods, and frequency and vertical wave number spectra , 2017 .
[8] Richard Scheps,et al. Monochromatic end-pumped operation of an alexandrite laser , 1993 .
[9] Chester S. Gardner,et al. Progress on laser technology for proposed space-based sodium lidar , 2018, LASE.
[10] Josef Höffner,et al. Mesopause temperature profiling by potassium lidar , 1996 .
[11] M. Rapp,et al. Demonstration of an iron fluorescence lidar operating at 372 nm wavelength using a newly-developed Nd:YAG laser. , 2017, Optics letters.
[12] Anthony E. Siegman,et al. A “Twisted-Mode” Technique for Obtaining Axially Uniform Energy Density in a Laser Cavity , 1965 .
[13] Achaya Teppitaksak,et al. High efficiency >26 W diode end-pumped Alexandrite laser. , 2014, Optics express.
[14] Michael Strotkamp,et al. Diode-pumped Alexandrite laser instrument for next generation satellite-based Earth observation , 2019, International Conference on Space Optics.
[15] John C. Walling,et al. Tunable alexandrite lasers , 1980 .
[16] H. Hoffmann,et al. Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements. , 2018, Optics express.
[17] M. Damzen,et al. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability , 2018 .
[18] R. J. Morris,et al. Winter/summer transition in the Antarctic mesopause region , 2015 .
[19] Adnan Kurt,et al. Efficient and low-threshold Alexandrite laser pumped by a single-mode diode , 2014 .
[20] S. Wada,et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed at Tromsø, Norway (69.6°N, 19.2°E). , 2017, Optics express.
[21] Richard Scheps,et al. Alexandrite laser pumped by semiconductor lasers , 1990 .
[22] F. Lübken,et al. First measurements of thermal tides in the summer mesopause region at Antarctic latitudes , 2011 .
[23] R. J. Morris,et al. Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica , 2015 .
[24] Martin Traub,et al. 50 W passively cooled, fiber coupled diode laser at 976 nm for pumping fiber lasers using 100 μm fiber bundles , 2008, SPIE LASE.
[25] J. Bösenberg,et al. Single-mode operation of an injection-seeded alexandrite ring laser for application in water-vapor and temperature differential absorption lidar. , 1996, Optics letters.
[26] J. Luttmann,et al. Frequency stabilization of Q-switched Nd:YAG oscillators for airborne and spaceborne lidar systems , 2007, SPIE LASE.
[27] Michael A. Krainak,et al. Progress on Raman laser for sodium resonance fluorescence lidar , 2018, LASE.