Elevated nest temperature has opposing effects on host species infested with parasitic nest flies

[1]  P. Schmid-Hempel Ecological immunology , 2021, Evolutionary Parasitology.

[2]  Melissa R. Ingala,et al.  Differential effects of elevated nest temperature and parasitism on the gut microbiota of wild avian hosts , 2021, Animal Microbiome.

[3]  F. Castaño-Vázquez,et al.  Experimental manipulation of cavity temperature produces differential effects on parasite abundances in blue tit nests at two different latitudes , 2021, International journal for parasitology. Parasites and wildlife.

[4]  Dana G. Schabo,et al.  Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales , 2020, Journal of Avian Biology.

[5]  J. Cornelius,et al.  Recovery of hematocrit and fat deposits varies by cage size in food-restricted captive red crossbills (Loxia curvirostra). , 2020, Journal of experimental zoology. Part A, Ecological and integrative physiology.

[6]  Jeremy M. Cohen,et al.  Avian responses to extreme weather across functional traits and temporal scales , 2020, Global change biology.

[7]  P. Gowaty,et al.  Eastern Bluebird (Sialia sialis) , 2020, Birds of the World.

[8]  R. R. Cohen,et al.  Tree Swallow (Tachycineta bicolor) , 2020, Birds of the World.

[9]  Sarah E. Goodwin,et al.  Does blood loss explain higher resting metabolic rates in nestling birds with hematophagous ectoparasites? , 2020 .

[10]  P. Lester,et al.  Sub-lethal effects of permethrin exposure on a passerine: implications for managing ectoparasites in wild bird nests , 2020, Conservation physiology.

[11]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[12]  Sarah A. Knutie,et al.  Host tolerance and resistance to parasitic nest flies differs between two wild bird species , 2019, Ecology and evolution.

[13]  Sarah A. Knutie Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species , 2019, bioRxiv.

[14]  Andrew W Bartlow,et al.  Long‐term variation in environmental conditions influences host–parasite fitness , 2019, Ecology and evolution.

[15]  A. Chawla,et al.  Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance , 2019, Cell.

[16]  J. Courter,et al.  The Impacts of Temperature, Precipitation, and Growing Degree-Days on First Egg Dates of Eastern Bluebird (Sialia sialis) and Tree Swallow (Tachycineta bicolor) in Ohio , 2018, The American Midland Naturalist.

[17]  Sheela P. Turbek,et al.  Microclimate and host body condition influence mite population growth in a wild bird-ectoparasite system , 2018, International journal for parasitology. Parasites and wildlife.

[18]  F. Castaño-Vázquez,et al.  Experimental manipulation of temperature reduce ectoparasites in nests of blue titsCyanistes caeruleus , 2018, Journal of Avian Biology.

[19]  D. Winkler,et al.  Geographic variation and environmental correlates of apparent survival rates in adult tree swallows Tachycineta bicolor , 2018, Journal of Avian Biology.

[20]  C. Ferris,et al.  The evolution of host defence to parasitism in fluctuating environments. , 2018, Journal of theoretical biology.

[21]  M. Cichoń,et al.  Lower haematocrit, haemoglobin and red blood cell number in zebra finches acclimated to cold compared to thermoneutral temperature , 2018 .

[22]  T. Hahn,et al.  Innate immunity and environmental correlates of Haemoproteus prevalence and intensity in an opportunistic breeder , 2018, Parasitology.

[23]  Jan‐Åke Nilsson,et al.  Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings , 2018 .

[24]  Sarah A. Knutie,et al.  Avoidance, tolerance, and resistance to ectoparasites in nestling and adult tree swallows , 2018 .

[25]  Brett R. Scheffers,et al.  Infection increases vulnerability to climate change via effects on host thermal tolerance , 2017, Scientific Reports.

[26]  P. He,et al.  Molluscicidal activity and mechanism of toxicity of a novel salicylanilide ester derivative against Biomphalaria species , 2017, Parasites & Vectors.

[27]  S. Armitage,et al.  Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association , 2017, Parasites & Vectors.

[28]  Thomas Arnold,et al.  Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta Peptide Derivatives , 2017, Scientific Reports.

[29]  Jeremy M. Cohen,et al.  The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. , 2017, Ecology letters.

[30]  J. Kurtz,et al.  Effects of environmental variation on host-parasite interaction in three-spined sticklebacks (Gasterosteus aculeatus). , 2016, Zoology.

[31]  J. Palermo-neto,et al.  Effects of heat stress on the formation of splenic germinal centres and immunoglobulins in broilers infected by Clostridium perfringens type A. , 2016, Veterinary immunology and immunopathology.

[32]  Sarah A. Knutie,et al.  Galápagos mockingbirds tolerate introduced parasites that affect Darwin's finches. , 2015, Ecology.

[33]  B. Koskella,et al.  Understanding the ecology and evolution of host–parasite interactions across scales , 2015, Evolutionary applications.

[34]  J. Bańbura,et al.  Long-term variation in hemoglobin concentration in nestling great tits Parus major. , 2015, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[35]  P. Snyder,et al.  Host life history and host-parasite syntopy predict behavioural resistance and tolerance of parasites. , 2015, The Journal of animal ecology.

[36]  D. Gil,et al.  Effects of temperature and nest heat exposure on nestling growth, dehydration and survival in a Mediterranean hole‐nesting passerine , 2014 .

[37]  A. Møller,et al.  Assessing the Effects of Climate on Host-Parasite Interactions: A Comparative Study of European Birds and Their Parasites , 2013, PloS one.

[38]  G. Sorci Immunity, resistance and tolerance in bird–parasite interactions , 2013, Parasite immunology.

[39]  F. Valera,et al.  Temperature during the free-living phase of an ectoparasite influences the emergence pattern of the infective phase , 2013, Parasitology.

[40]  Sarah A. Knutie,et al.  Experimental demonstration of a parasite-induced immune response in wild birds: Darwin's finches and introduced nest flies , 2013, Ecology and evolution.

[41]  D. Ardia The Effects of Nestbox Thermal Environment on Fledging Success and Haematocrit in Tree Swallows , 2013 .

[42]  I. Cattadori,et al.  Climate changes influence free‐living stages of soil‐transmitted parasites of European rabbits , 2013, Global change biology.

[43]  P. Suñé,et al.  Positive Outcomes Influence the Rate and Time to Publication, but Not the Impact Factor of Publications of Clinical Trial Results , 2013, PloS one.

[44]  Pieter T. J. Johnson,et al.  Temperature‐driven shifts in a host‐parasite interaction drive nonlinear changes in disease risk , 2012 .

[45]  K. Benkendorff,et al.  Influence of elevated temperatures on the immune response of abalone, Haliotis rubra. , 2012, Fish & shellfish immunology.

[46]  K. Ruckstuhl,et al.  Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra , 2012, Parasitology.

[47]  Ruslan Medzhitov,et al.  Disease Tolerance as a Defense Strategy , 2012, Science.

[48]  S. Merino,et al.  Host-parasite interactions under extreme climatic conditions , 2011 .

[49]  A. Best,et al.  Epidemiological, Evolutionary, and Coevolutionary Implications of Context-Dependent Parasitism , 2011, The American Naturalist.

[50]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[51]  D. Clayton,et al.  Ecological immunology of bird-ectoparasite systems. , 2010, Trends in parasitology.

[52]  R. Poulin,et al.  Parasites and global warming: net effects of temperature on an intertidal host-parasite system. , 2010 .

[53]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[54]  Lynn B. Martin,et al.  The effects of anthropogenic global changes on immune functions and disease resistance , 2010, Annals of the New York Academy of Sciences.

[55]  J. Koprivnikar,et al.  Effects of temperature, salinity, and pH on the survival and activity of marine cercariae , 2010, Parasitology Research.

[56]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[57]  H. Proctor,et al.  The Function of Feathers in Tree Swallow Nests: Insulation or Ectoparasite Barrier? , 2009 .

[58]  K. King,et al.  Environment can alter selection in host-parasite interactions. , 2009, Trends in parasitology.

[59]  A. Read,et al.  Animal Defenses against Infectious Agents: Is Damage Control More Important Than Pathogen Control? , 2008, PLoS biology.

[60]  J. P. Mccarty,et al.  Relative importance off environmental variables in determining the growth off nestling Tree Swallows Tachycineta bicolor , 2008 .

[61]  D. Brooks,et al.  How will global climate change affect parasite-host assemblages? , 2007, Trends in parasitology.

[62]  Lars Råberg,et al.  Disentangling Genetic Variation for Resistance and Tolerance to Infectious Diseases in Animals , 2007, Science.

[63]  Brandon L. Pearson,et al.  Sources of variation in haematocrit in birds , 2007 .

[64]  J. Ward,et al.  Temperature affects coral disease resistance and pathogen growth , 2007 .

[65]  A. White,et al.  THE EVOLUTION OF PARASITES IN RESPONSE TO TOLERANCE IN THEIR HOSTS: THE GOOD, THE BAD, AND APPARENT COMMENSALISM , 2006, Evolution; international journal of organic evolution.

[66]  T. Whitworth,et al.  Effects of Experimental Variation in Temperature on Larval Densities of Parasitic Protocalliphora (Diptera: Calliphoridae) in Nests of Tree Swallows (Passeriformes: Hirundinidae) , 2005 .

[67]  R. Dawson,et al.  The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine , 2005, Oecologia.

[68]  A. Gehad,et al.  Effect of heat stress on production parameters and immune responses of commercial laying hens. , 2004, Poultry science.

[69]  T. Goater,et al.  Parasitism: The Diversity and Ecology of Animal Parasites , 2001 .

[70]  E. O’Brien,et al.  Assessing the effects of haematophagous ectoparasites on the health of nestling birds: haematocrit vs haemoglobin levels in House Wrens parasitized by blow fly larvae , 2001 .

[71]  A. Møller,et al.  Effects of a Dipteran Ectoparasite on Immune Response and Growth Trade-Offs in Barn Swallow, Hirundo rustica, Nestlings , 1998 .

[72]  R. Poulin Evolutionary Ecology of Parasites , 1997 .

[73]  S. Merino,et al.  Weather dependent effects of nest ectoparasites on their bird hosts , 1996 .

[74]  T. Whitworth,et al.  Studies on the life history of some species of Protocalliphora (Diptera: Calliphoridae) , 1991 .

[75]  W. Shields,et al.  BARN SWALLOW COLONIALITY: A NET COST FOR GROUP BREEDING IN THE ADIRONDACKS?' , 1987 .

[76]  B. Mitchell,et al.  Influence of environmental temperatures on the serologic responses of broiler chickens to inactivated and viable Newcastle disease vaccines. , 1987, Avian diseases.

[77]  M. T. Murphy Nestling Eastern Kingbird Growth: Effects of Initial Size and Ambient Temperature , 1985 .

[78]  W. Drew,et al.  Effects of Heat , 1954, Journal of the Royal Army Medical Corps.

[79]  Brooke Sykes,et al.  Nest Microclimate Manipulation Affects Growth, Development, And Heat-Shock Protein Production In The Eastern Bluebird (Sialia Sialis) , 2021 .

[80]  S. Åkesson,et al.  Effect of light-level geolocators on apparent survival of two highly aerial swift species , 2018 .

[81]  B. Mobasher,et al.  Influence of elevated temperatures , 2017 .

[82]  E. Barba,et al.  Nestling Growth is Impaired by Heat Stress: an Experimental Study in a Mediterranean Great Tit Population. , 2016, Zoological studies.

[83]  E. M. Boyd THE EXTERNAL PARASITES OF BIRDS: A REVIEW , 2016 .

[84]  A. Abramov,et al.  Morphological Differentiation of the Skull in Two Closely-related Mustelid Species (Carnivora: Mustelidae). , 2016, Zoological studies.

[85]  M. Forbes,et al.  Variable effects of increased temperature on a trematode parasite and its intertidal hosts , 2013 .

[86]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[87]  J. Seed,et al.  Parasitism: The Diversity and Ecology , 2002 .

[88]  Clive G. Jones,et al.  Understanding in Ecology , 1994 .

[89]  D. Roby,et al.  EFFECTS OF BIRD BLOWFLY PARASITISM ON EASTERN BLUEBIRD AND TREE SWALLOW NESTLINGS , 1992 .

[90]  J. Halstead American Dipper nestlings parasitized by blowfly larvae and the northern fowl mite , 1988 .

[91]  How Will Global Climate Change Affect Parasite-Host How Will Global Climate Change Affect Parasite-Host , 2022 .