Ab initio adiabatic study of the AgH system

[1]  M. Ben Yahia,et al.  Application of Innovative Analytical Modeling for the Physicochemical Analysis of Adsorption Isotherms of Silver Nitrate on Helicenes: Phenomenological Study of the Complexation Process , 2021, Adsorption Science & Technology.

[2]  M. Ben Yahia,et al.  Physico-chemical study of complexation of silver ion (Ag+) by macrocyclic molecules (hexa-Helicenes) based on statistical physics theory: new description of a cancer drug , 2020, Scientific Reports.

[3]  Leila Mejrissi,et al.  Ab initio diabatic and adiabatic calculations for francium hydride FrH , 2020 .

[4]  M. Kurban,et al.  Electronic structure, elastic and phonon properties of perovskite-type hydrides MgXH 3 (X = Fe, Co) for hydrogen storage , 2018, Solid State Communications.

[5]  S. Ott,et al.  Accelerating proton-coupled electron transfer of metal hydrides in catalyst model reactions , 2018, Nature Chemistry.

[6]  F. Gadéa,et al.  Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states , 2018 .

[7]  F. Gadéa,et al.  An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states , 2017 .

[8]  F. Gadéa,et al.  Theoretical investigation of the diatomic Van der Waals systems Ca+He and CaHe , 2017 .

[9]  F. Gadéa,et al.  Spectroscopic ab initio investigation of the electronic properties of (SrK) , 2017 .

[10]  F. Gadéa,et al.  Ab initio investigation of the electronic and vibrational properties for the (CaLi)+ ionic molecule , 2016 .

[11]  F. Gadéa,et al.  Ab initio calculation of the electronic structure of the strontium hydride ion (SrH , 2015 .

[12]  C. Mazet,et al.  Well‐Defined Transition Metal Hydrides in Catalytic Isomerizations , 2014 .

[13]  C. Mazet,et al.  Well-defined transition metal hydrides in catalytic isomerizations. , 2014, Chemical communications.

[14]  F. Gadéa,et al.  Ab initio spectroscopic study for the NaRb molecule in ground and excited states , 2014 .

[15]  Riadh Dardouri,et al.  Ab Initio Diabatic energies and dipole moments of the electronic states of RbLi molecule , 2013, J. Comput. Chem..

[16]  F. Gadéa,et al.  Ab initio investigation of electronic properties of the magnesium hydride molecular ion. , 2013, The journal of physical chemistry. A.

[17]  F. Gadéa,et al.  One and two-electron investigation of electronic structure for Ba(+)Xe and BaXe van der Waals molecules in a pseudopotential approach. , 2013, The journal of physical chemistry. A.

[18]  F. Gadéa,et al.  Adiabatic ab initio study of the BaH(+) ion including high energy excited states. , 2013, The journal of physical chemistry. A.

[19]  F. Gadéa,et al.  Theoretical study of the electronic structure of LiX and NaX (X = Rb, Cs) molecules , 2012 .

[20]  Hongjun Fan,et al.  Probing the structural and electronic properties of Ag(n)H(-) (n = 1-3) using photoelectron imaging and theoretical calculations. , 2012, The Journal of chemical physics.

[21]  F. Gadéa,et al.  Theoretical study of the electronic structure of KLi molecule: Adiabatic and diabatic potential energy curves and dipole moments , 2012 .

[22]  F. Gadéa,et al.  Ab initio adiabatic and diabatic energies and dipole moments of the CaH+ molecular ion. , 2011, The journal of physical chemistry. A.

[23]  F. Gadéa,et al.  Ab initio study of spectroscopic properties of the calcium hydride molecular ion , 2011 .

[24]  F. Gadéa,et al.  Theoretical study of the MgAr molecule and its ion Mg+Ar: potential energy curves and spectroscopic constants , 2011 .

[25]  B. Oujia,et al.  Potential energy curves, permanent and transition dipole moments for numerous electronic excited states of CaAr , 2010 .

[26]  M. Aymar,et al.  Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment , 2010, 1007.1892.

[27]  Hao-Wei Chang,et al.  Stable silver(I) hydride complexes supported by diselenophosphate ligands. , 2010, Inorganic chemistry.

[28]  F. Gadéa,et al.  Dynamic couplings, radiative and nonradiative lifetimes of the A1Σ+ and C1Σ+ states of the KH molecule , 2007 .

[29]  F. Gadéa,et al.  Theoretical study of the CsH molecule: adiabatic and diabatic potential energy curves and dipole moments , 2006 .

[30]  P. Bernath,et al.  Direct-potential-fit analysis of new infrared and UV/visible AΣ+1-XΣ+1 emission spectra of AgH and AgD , 2005 .

[31]  P. Bernath,et al.  emission spectra of AgH and AgD , 2005 .

[32]  L. Pichl,et al.  A coupled treatment of 1 S + and 3 ? states of AgH molecule , 2004 .

[33]  Xuefeng Wang,et al.  Infrared Spectra and Structures of the Stable CuH2-, AgH2-, AuH2-, and AuH4- Anions and the AuH2 Molecule , 2003 .

[34]  R. L. Roy,et al.  Representing Born -Oppenheimer breakdown radial correction functions for diatomic molecules , 2002 .

[35]  K. Hirao,et al.  Theoretical study of the unusual potential energy curve of the A 1Σ+ state of AgH , 2002 .

[36]  K. Hirao,et al.  Relativistic and correlated all-electron calculations on the ground and excited states of AgH and AuH , 2000 .

[37]  Jenning Y. Seto,et al.  Vibration-rotation emission spectra and combined isotopomer analyses for the coinage metal hydrides: CuH & CuD, AgH & AgD, and AuH & AuD , 1999 .

[38]  Mohanty,et al.  Fully relativistic calculations for the ground state of the AgH molecule. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[39]  H. Schaefer,et al.  Relativistic and correlation effects in CuH, AgH, and AuH: Comparison of various relativistic methods , 1995 .

[40]  P. Millié,et al.  Nonperturbative method for core–valence correlation in pseudopotential calculations: Application to the Rb2 and Cs2 molecules , 1992 .

[41]  R. Urban,et al.  The ground state infrared spectra of four diatomic deuterides (GaD, InD, TlD, AgD) and the determination of mass‐independent molecular parameters , 1991 .

[42]  L. Ziegler,et al.  Time-domain analysis in pressure perturbation spectroscopy: Optimized potential surfaces in argon-perturbed methyl iodide , 1989 .

[43]  H. Jones,et al.  The ground state infrared spectra of two isotopic forms of silver hydride (107AgH and 109AgH) , 1989 .

[44]  B. A. Hess,et al.  Relativistic ab initio CI study of the X1Σ+ and A1Σ+ states of the AgH molecule , 1987 .

[45]  C. Bauschlicher,et al.  Theoretical spectroscopic parameters for the low-lying states of the second-row transition metal hydrides , 1987 .

[46]  W. C. Ermler,et al.  Ab initio calculations including relativistic effects for Ag2, Au2, AgAu, AgH, and AuH , 1985 .

[47]  P. Fuentealba,et al.  Cu and Ag as one‐valence‐electron atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, and AgH , 1984 .

[48]  W. Meyer,et al.  Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms , 1984 .

[49]  P. Fuentealba,et al.  Cu and Ag as one‐valence‐electron atoms: Pseudopotential results for Cu2, Ag2, CuH, AgH, and the corresponding cations , 1983 .

[50]  R. H. Hobbs,et al.  Electronic structure of the noble gas dimer ions. I. Potential energy curves and spectroscopic constants , 1978 .

[51]  P. Durand,et al.  A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids , 1975 .

[52]  P. Durand,et al.  New atomic pseudopotentials for electronic structure calculations of molecules and solids , 1974 .

[53]  D. R. Rossington,et al.  Hydrogen Adsorption on Silver, Gold, and Aluminum. Studies of Parahydrogen Conversion , 1964 .

[54]  E. Olsson,et al.  Eine neue Untersuchung über die Banden des Silberhydrides , 1931 .