The mitochondrial Na(+)/Ca(2+) exchanger.

[1]  P. Várnai,et al.  Calcium transport across the inner mitochondrial membrane: Molecular mechanisms and pharmacology , 2012, Molecular and Cellular Endocrinology.

[2]  S. Matsuoka,et al.  Pivotal role of mitochondrial Na+–Ca2+ exchange in antigen receptor mediated Ca2+ signalling in DT40 and A20 B lymphocytes , 2012, The Journal of physiology.

[3]  I. Ambudkar,et al.  Faculty Opinions recommendation of A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. , 2011 .

[4]  S. Dunn,et al.  Stomatin-Like Protein 2 Binds Cardiolipin and Regulates Mitochondrial Biogenesis and Function , 2011, Molecular and Cellular Biology.

[5]  V. Mootha,et al.  Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter , 2011, Nature.

[6]  S. Fleischer,et al.  CGP-37157 Inhibits the Sarcoplasmic Reticulum Ca2+ ATPase and Activates Ryanodine Receptor Channels in Striated Muscle , 2011, Molecular Pharmacology.

[7]  V. Mootha,et al.  MICU1 encodes a mitochondrial EF hand protein required for Ca2+ uptake , 2010, Nature.

[8]  M. Birnbaum,et al.  Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria , 2010, Cell.

[9]  E. Carafoli The fateful encounter of mitochondria with calcium: how did it happen? , 2010, Biochimica et biophysica acta.

[10]  J. Martinou,et al.  SLP-2 negatively modulates mitochondrial sodium-calcium exchange. , 2010, Cell calcium.

[11]  V. Shoshan-Barmatz,et al.  NCLX is an essential component of mitochondrial Na+/Ca2+ exchange , 2009, Proceedings of the National Academy of Sciences.

[12]  T. Gunter,et al.  Characteristics and possible functions of mitochondrial Ca(2+) transport mechanisms. , 2009, Biochimica et biophysica acta.

[13]  D. Clapham,et al.  Genome-Wide RNAi Screen Identifies Letm1 as a Mitochondrial Ca2+/H+ Antiporter , 2009, Science.

[14]  S. Waxman,et al.  Regulation of Podosome Formation in Macrophages by a Splice Variant of the Sodium Channel SCN8A* , 2009, Journal of Biological Chemistry.

[15]  Michael R. Duchen,et al.  PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death , 2009, Molecular cell.

[16]  B. Platt,et al.  Cannabidiol Targets Mitochondria to Regulate Intracellular Ca2+ Levels , 2009, The Journal of Neuroscience.

[17]  E. Murphy,et al.  Regulation of Intracellular and Mitochondrial Sodium in Health and Disease , 2009, Circulation research.

[18]  M. Cataldi,et al.  Role of the mitochondrial sodium/calcium exchanger in neuronal physiology and in the pathogenesis of neurological diseases , 2009, Progress in Neurobiology.

[19]  Daniel A Beard,et al.  Analysis of cardiac mitochondrial Na+–Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handing suggests a 3: 1 stoichiometry , 2008, The Journal of physiology.

[20]  M. Duchen,et al.  Mitochondria: the hub of cellular Ca2+ signaling. , 2008, Physiology.

[21]  Satoshi Matsuoka,et al.  Cytoplasmic Na+‐dependent modulation of mitochondrial Ca2+ via electrogenic mitochondrial Na+–Ca2+ exchange , 2008, The Journal of physiology.

[22]  James D. Johnson,et al.  Voltage-gated Ca(2+) influx and insulin secretion in human and mouse beta-cells are impaired by the mitochondrial Na(+)/Ca(2+) exchange inhibitor CGP-37157. , 2007, European journal of pharmacology.

[23]  A. Minelli,et al.  Mitochondrial localization of Na+/Ca2+ exchangers NCX1-3 in neurons and astrocytes of adult rat brain in situ. , 2007, Pharmacological research.

[24]  D. Poburko,et al.  Transient Receptor Potential Channel 6–Mediated, Localized Cytosolic [Na+] Transients Drive Na+/Ca2+ Exchanger–Mediated Ca2+ Entry in Purinergically Stimulated Aorta Smooth Muscle Cells , 2007, Circulation research.

[25]  S. Sensi,et al.  Mechanism and Regulation of Cellular Zinc Transport , 2007, Molecular medicine.

[26]  Salvatore Amoroso,et al.  Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. , 2007, Cell calcium.

[27]  P. Bernardi,et al.  Calcium and cell death: the mitochondrial connection. , 2007, Sub-cellular biochemistry.

[28]  I. Sekler,et al.  Single alpha-domain constructs of the Na+/Ca2+ exchanger, NCLX, oligomerize to form a functional exchanger. , 2006, Biochemistry.

[29]  E. Barrett,et al.  Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+–Ca2+ exchanger increases post‐tetanic evoked release , 2006, The Journal of physiology.

[30]  Brian O'Rourke,et al.  Elevated Cytosolic Na+ Decreases Mitochondrial Ca2+ Uptake During Excitation–Contraction Coupling and Impairs Energetic Adaptation in Cardiac Myocytes , 2006, Circulation research.

[31]  I. Sekler,et al.  Silencing of ZnT-1 expression enhances heavy metal influx and toxicity , 2006, Journal of Molecular Medicine.

[32]  M. Jabůrek,et al.  Kinetics and ion specificity of Na+/Ca2+ exchange mediated by the reconstituted beef heart mitochondrial Na+/Ca2+ antiporter , 2004 .

[33]  J. Lytton,et al.  The cation/Ca(2+) exchanger superfamily: phylogenetic analysis and structural implications. , 2004, Molecular biology and evolution.

[34]  I. Sekler,et al.  Lithium-Calcium Exchange Is Mediated by a Distinct Potassium-independent Sodium-Calcium Exchanger* , 2004, Journal of Biological Chemistry.

[35]  J. Lytton,et al.  Molecular Cloning of a Sixth Member of the K+-dependent Na+/Ca2+ Exchanger Gene Family, NCKX6* , 2004, Journal of Biological Chemistry.

[36]  S. Sensi,et al.  A Sodium Zinc Exchange Mechanism Is Mediating Extrusion of Zinc in Mammalian Cells* , 2004, Journal of Biological Chemistry.

[37]  David E. Clapham,et al.  The mitochondrial calcium uniporter is a highly selective ion channel , 2004, Nature.

[38]  L. Kiedrowski,et al.  Inhibition of plasmalemmal Na(+)/Ca(2+) exchange by mitochondrial Na(+)/Ca(2+) exchange inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) in cerebellar granule cells. , 2003, Biochemical pharmacology.

[39]  Feng Yang,et al.  Ca2+ influx–independent synaptic potentiation mediated by mitochondrial Na+-Ca2+ exchanger and protein kinase C , 2003, The Journal of cell biology.

[40]  Maurizio Taglialatela,et al.  Differential expression of the Na+‐Ca2+ exchanger transcripts and proteins in rat brain regions , 2003, The Journal of comparative neurology.

[41]  P. Ping,et al.  Protein Kinase C&egr; Interacts With and Inhibits the Permeability Transition Pore in Cardiac Mitochondria , 2003, Circulation research.

[42]  C. Anderson,et al.  Inhibition of mitochondrial Na+-Ca2+ exchanger increases mitochondrial metabolism and potentiates glucose-stimulated insulin secretion in rat pancreatic islets. , 2003, Diabetes.

[43]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[44]  B. Koidl,et al.  A novel benzothiazine Ca2+ channel antagonist, semotiadil, inhibits cardiac L-type Ca2+ currents. , 1997, European journal of pharmacology.

[45]  G. Brierley,et al.  The Sodium-Calcium Antiport of Heart Mitochondria Is Not Electroneutral (*) , 1995, The Journal of Biological Chemistry.

[46]  T. Pozzan,et al.  Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. , 1993, Science.

[47]  S. Snyder,et al.  Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. A. Matlib,et al.  A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria. , 1993, The Journal of biological chemistry.

[49]  Z. Shariat-Madar,et al.  Reconstitution, identification, purification, and immunological characterization of the 110-kDa Na+/Ca2+ antiporter from beef heart mitochondria. , 1992, The Journal of biological chemistry.

[50]  G. Brierley,et al.  Transmembrane gradients of free Na+ in isolated heart mitochondria estimated using a fluorescent probe. , 1992, The American journal of physiology.

[51]  J. Mill,et al.  Fluorescence measurements of cytoplasmic and mitochondrial sodium concentration in rat ventricular myocytes. , 1992, The Journal of physiology.

[52]  S. Novgorodov,et al.  Regulation of the mitochondrial Na+/Ca2+ antiport by matrix pH. , 1991, Archives of biochemistry and biophysics.

[53]  M. Chiesi,et al.  Structural dependency of the inhibitory action of benzodiazepines and related compounds on the mitochondrial Na+-Ca2+ exchanger. , 1988, Biochemical pharmacology.

[54]  M. Crompton,et al.  The effects of Mg2+ and adenine nucleotides on the sensitivity of the heart mitochondrial Na+-Ca2+ carrier to extramitochondrial Ca2+. A study using arsenazo III-loaded mitochondria. , 1987, Biochemical Journal.

[55]  T. Gunter,et al.  Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. , 1986, The Journal of biological chemistry.

[56]  G. Lukács,et al.  The Ba2+ sensitivity of the Na+-induced Ca2+ efflux in heart mitochondria: the site of inhibitory action. , 1986, Biochimica et biophysica acta.

[57]  M. Brand The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. , 1985, The Biochemical journal.

[58]  M. A. Matlib,et al.  Clonazepam and diltiazem both inhibit sodium-calcium exchange of mitochondria, but only diltiazem inhibits the slow action potentials of cardiac muscles. , 1985, Biochemical and biophysical research communications.

[59]  M. Brand Electroneutral efflux of Ca2+ from liver mitochondria. , 1985, The Biochemical journal.

[60]  M. A. Matlib,et al.  A specific inhibitory action of certain benzothiazepines and benzodiazepines on the sodium-calcium exchange process of heart and brain mitochondria. , 1983, European journal of pharmacology.

[61]  M. A. Matlib,et al.  Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs. , 1982, The Journal of biological chemistry.

[62]  M. Crompton,et al.  Evidence for the existence of regulatory sites for Ca2+ on the Na+/Ca2+ carrier of cardiac mitochondria. , 1982, The Biochemical journal.

[63]  E. Sigel,et al.  THE REGULATION OF INTRACELLULAR CALCIUM , 1976, Clinical endocrinology.

[64]  J. Bodnár,et al.  Ni2+, a new inhibitor of mitochondrial calcium transport. , 1981, Biochimica et biophysica acta.

[65]  E. Carafoli,et al.  The Ca2+-Na+ antiporter of heart mitochondria operates electroneutrally. , 1980, Biochemical and biophysical research communications.

[66]  M. Crompton,et al.  The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. , 1977, European journal of biochemistry.

[67]  R. Tiozzo,et al.  The release of calcium from heart mitochondria by sodium. , 1974, Journal of molecular and cellular cardiology.