Bayesian statistical data assimilation for ecosystem models using Markov Chain Monte Carlo

Abstract This study considers advanced statistical approaches for sequential data assimilation. These are explored in the context of nowcasting and forecasting using nonlinear differential equation based marine ecosystem models assimilating sparse and noisy non-Gaussian multivariate observations. The statistical framework uses a state space model with the goal of estimating the time evolving probability distribution of the ecosystem state. Assimilation of observations relies on stochastic dynamic prediction and Bayesian principles. In this study, a new sequential data assimilation approach is introduced based on Markov Chain Monte Carlo (MCMC). The ecosystem state is represented by an ensemble, or sample, from which distributional properties, or summary statistical measures, can be derived. The Metropolis-Hastings based MCMC approach is compared and contrasted with two other sequential data assimilation approaches: sequential importance resampling, and the (approximate) ensemble Kalman filter (including computational comparisons). A simple illustrative application is provided based on a 0-D nonlinear plankton ecosystem model with multivariate non-Gaussian observations of the ecosystem state from a coastal ocean observatory. The MCMC approach is shown to be straightforward to implement and to effectively characterize the non-Gaussian ecosystem state in both nowcast and forecast experiments. Results are reported which illustrate how non-Gaussian information originates, and how it can be used to characterize ecosystem properties.

[1]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[2]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[3]  Michael Dowd,et al.  A Bayesian approach to the ecosystem inverse problem , 2003 .

[4]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[5]  G. Kitagawa Theory and Methods , 1998 .

[6]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[7]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[8]  Walter R. Gilks,et al.  BUGS - Bayesian inference Using Gibbs Sampling Version 0.50 , 1995 .

[9]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[10]  G. Kitagawa A self-organizing state-space model , 1998 .

[11]  Michael Dowd,et al.  A bio-physical coastal ecosystem model for assessing environmental effects of marine bivalve aquaculture , 2005 .

[12]  W. Gilks Markov Chain Monte Carlo , 2005 .

[13]  P. De Mey,et al.  The Mediterranean ocean forecasting system: first phase of implementation (1998–2001) , 2003 .

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  Scott C. Doney,et al.  Quantifying the effects of dynamical noise on the predictability of a simple ecosystem model , 2004 .

[16]  G. Evensen,et al.  An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea , 2003 .

[17]  Robert N. Miller,et al.  Data assimilation into nonlinear stochastic models , 1999 .

[18]  J. P.,et al.  A Variance-Minimizing Filter for Large-Scale Applications , 2009 .

[19]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[20]  Eileen E. Hofmann,et al.  A data assimilation technique applied to a predator-prey model , 1995 .

[21]  Andrew M. Edwards,et al.  Adding Detritus to a Nutrient–Phytoplankton–Zooplankton Model:A Dynamical-Systems Approach , 2001 .

[22]  Pierre Brasseur,et al.  A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems , 2003 .

[23]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[24]  Tommy D. Dickey,et al.  Emerging ocean observations for interdisciplinary data assimilation systems , 2003 .

[25]  J. Vallino Improving marine ecosystem models: Use of data assimilation and mesocosm experiments , 2000 .

[26]  Matthew Dunn Introduction to the modelling of marine ecosystems, W. Fennel, T. Neumann, in: Elsevier Oceanography Series, vol. 72. (2004), (paperback), GBP 48, US $ 81.95, Eur 69, 297 pp., ISBN: 0-444-51704-9 , 2006 .

[27]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[28]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[29]  M. Nakamura,et al.  Nonlinear filters using a statistical processing technique , 1973 .

[30]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[31]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[32]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[33]  Dominic S. Lee,et al.  A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..

[34]  A. M. Edwards,et al.  The high-nutrient, low-chlorophyll regime of the ocean: limits on biomass and nitrate before and after iron enrichment , 2004 .

[35]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[36]  Jens Schröter,et al.  Sequential weak constraint parameter estimation in an ecosystem model , 2003 .

[37]  S. Bricker,et al.  An integrated methodology for assessment of estuarine trophic status , 2003 .

[38]  Joseph Goedert Following a moving target. , 2008, Health data management.

[39]  Geir Evensen,et al.  An Ensemble Kalman filter with a 1-D marine ecosystem model , 2002 .

[40]  M. Dowd A sequential Monte Carlo approach for marine ecological prediction , 2006 .

[41]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[42]  Franz J. Weissing,et al.  BIOLOGICAL CONDITIONS FOR OSCILLATIONS AND CHAOS GENERATED BY MULTISPECIES COMPETITION , 2001 .

[43]  Peter G. Challenor,et al.  A Markov chain Monte Carlo method for estimation and assimilation into models , 1997 .

[44]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[45]  L. Tierney Rejoinder: Markov Chains for Exploring Posterior Distributions , 1994 .

[46]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[47]  G. Evans,et al.  Defining misfit between biogeochemical models and data sets , 2003 .

[48]  Paul Krause,et al.  Dimensional reduction for a Bayesian filter. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[50]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[51]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[52]  G Marion,et al.  Stochastic modelling of environmental variation for biological populations. , 2000, Theoretical population biology.

[53]  Catherine A. Brown,et al.  Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient, and Sun‐induced fluorescence in coastal waters , 2007 .

[54]  Andreas Oschlies,et al.  Basin-scale performance of a locally optimized marine ecosystem model , 2005 .

[55]  G. Evensen,et al.  Assimilation of ocean colour data into a biochemical model of the North Atlantic: Part 1. Data assimilation experiments , 2003 .