The bonding of acetylene and ethylene in high-valent and low-valent transition metal compounds
暂无分享,去创建一个
[1] G. Frenking,et al. Struktur und Bindungsverhältnisse der Übergangsmetall‐Diwasserstoffkomplexe [M(CO)5(H2)] (M = Cr, Mo, W) , 1995 .
[2] J. Almlöf,et al. Exploiting non-abelian point group symmetry in direct two-electron integral transformations , 1991 .
[3] G. Dobson,et al. Infrared Spectra and Structures of Metal Carbonyl Derivatives. III. Acetylene and Olefin Derivatives of Group VI Metal Carbonyls , 1963 .
[4] W. Goddard,et al. Dichlorotitanacyclopropane. The Structure and Reactivity of a Metallacyclopropane , 1985 .
[5] W. R. Wadt,et al. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .
[6] M. Hall,et al. Theoretical comparison between nucleophilic and electrophilic transition metal carbenes using generalized molecular orbital and configuration interaction methods , 1984 .
[7] G. Frenking,et al. Structure and Bonding of the Transition-Metal Carbonyl Complexes M(CO)5L (M = Cr, Mo, W) and M(CO)3L (M = Ni, Pd, Pt; L = CO, SiO, CS, N2, NO+, CN-, NC-, HCCH, CCH2, CH2, CF2, H2)1 , 1996 .
[8] P. C. Hariharan,et al. The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .
[9] R. Hoffmann,et al. Structural and theoretical evidence for participation of the second acetylene .pi. orbital in transition metal alkyne complexes , 1982 .
[10] Dietmar Seyferth,et al. Comprehensive Organometallic Chemistry , 1984 .
[11] Gernot Frenking,et al. Theoretical Studies of Organometallic Compounds. XIX. Complexes of Transition Metals in High and Low Oxidation States with Side-On-Bonded .pi.-Ligands , 1995 .
[12] G. Frenking,et al. Structure and Bonding of Transition Metal Dihydrogen Complexes [M(CO)5(H2)] (M = Cr, Mo, W)†‡ , 1995 .
[13] E. Veen. Low-energy electron-impact spectroscopy on ethylene , 1976 .
[14] G. Frenking,et al. Structures and Bond Energies of the Transition-Metal Carbonyls M(CO)5 (M = Fe, Ru, Os) and M(CO)4 (M = Ni, Pd, Pt) , 1995 .
[15] L. Hegedus. Comprehensive organometallic chemistry II , 1995 .
[16] G. Frenking,et al. Structures and Bond Energies of the Transition Metal Hexacarbonyls M(CO)6 (M = Cr, Mo, W). A Theoretical Study , 1994 .
[17] Marco Häser,et al. Improvements on the direct SCF method , 1989 .
[18] G. Frenking,et al. Theoretical studies of organometallic compounds. 5. Alkyne and vinylidene complexes of molybdenum and tungsten in high-oxidation states. , 1993 .
[19] J. Sancho,et al. Tantalacyclopentane complexes and their role in the catalytic dimerization of olefins , 1980 .
[20] Hans Horn,et al. Prescreening of two‐electron integral derivatives in SCF gradient and Hessian calculations , 1991 .
[21] J. Pople,et al. Møller–Plesset theory for atomic ground state energies , 1975 .
[22] M. D. Cooke,et al. Transition Metal Carbene Complexes , 1983 .
[23] A. Kuppermann,et al. Singlet → triplet transitions in methyl-substituted ethylenes , 1975 .
[24] G. Frenking,et al. Copper-substituted ethanes as a model for copper-acetylene interactions on the metal surface Quantum mechanical study of the structure and bonding of copper-acetylene and copper-ethylene compounds Cun(C2H2) (n = 1, 2, 4), Cu(C2H2) +, Cun(C2H4 (n = 1, 2) and Cu(C2H4)+1,2☆ , 1996 .
[25] George Vacek,et al. Low-lying triplet electronic states of acetylene:cis3B2 and3A2,trans3Bu and3Au , 1993 .
[26] J. Pople,et al. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .
[27] J. S. Binkley,et al. Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .
[28] D. Fenske,et al. Unsymmetrisch substituierte Alkinkomplexe von Wolfram(IV). Die Kristallstruktur von PPh4[WCl5(HCCPh)]·CH2Cl2 , 1988 .
[29] R. Bartlett,et al. A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .
[30] G. Erker,et al. Equilibrium between metallaindans and aryne olefin-metal complexes , 1979 .
[31] H. Fischer,et al. Ein einfacher syntheseweg für cyclobutenylidenwolfram-komplexe—struktur von Pentacarbonyl(phenylacetylen) wolfram , 1995 .
[32] M. Plesset,et al. Note on an Approximation Treatment for Many-Electron Systems , 1934 .
[33] K. Dehnicke,et al. [WCl4(Me3Si-C≡C-SiMe3)]2 Synthese, IR-Spektrum und Kristallstruktur , 1984 .
[34] Hans W. Horn,et al. ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .
[35] Olga Kennard,et al. Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals , 1989 .
[36] J. Ibers,et al. Coordination of Unsaturated Molecules to Transition Metals , 1976 .
[37] Mark S. Gordon,et al. The isomers of silacyclopropane , 1980 .
[38] Rodney J. Bartlett,et al. Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .
[39] Gernot Frenking,et al. Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals , 1995 .
[40] G. Frenking,et al. The calculation of bond dissociation energies of transition metal complexes using isostructural reactions , 1995 .
[41] G. Frenking,et al. Theoretical studies of the M–CO bond lengths and first dissociation energies of the transition metal hexacarbonyls Cr(CO)6, Mo(CO)6 and W(CO)6 , 1993 .
[42] R. Bartlett,et al. The full CCSDT model for molecular electronic structure , 1987 .
[43] J. Cizek. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .
[44] Michael Dolg,et al. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .