The bonding of acetylene and ethylene in high-valent and low-valent transition metal compounds

Abstract The equilibrium geometries of the transition metal compounds WCl 4 L, WCl 5 L − and W(CO) 5 L (L = acetylene, ethylene) are theoretically predicted at the HF and MP2 levels of theory using a relativistic effective core potential for tungsten and valence shell basis sets of DZ + P quality. The WL dissociation energies are calculated at the CCSD(T) level of theory. The calculated geometries are in very good agreement with experimental values. The WC acetylene and WC ethylene bond distances of WCl 4 L are much shorter than bond lengths of W(CO) 5 L. However, the (CO) 5 WL bond dissociation energies are higher than or comparable in magnitude with the Cl 4 WL bond energies. This result can be explained by the different nature of the tungsten-carbon bonds in W(CO) 5 L and WCl 4 L, as revealed by the charge decomposition analysis (CDA) of the compounds. The WC bonds of the low-valent carbonyl complexes have donor-acceptor character and the binding can be understood in terms of the Dewar-Chatt-Duncanson model. The tungsten-carbon bonds of WCl 4 L are polar covalent bonds which are formally formed from the triplet states of WCl 4 and L. The dissociation energies of WCl 4 L are very low, because the energy which is necessary to promote acetylene and ethylene into the lowest lying triplet state is very high. The CDA results for WCl 5 L − suggest that the anions might also be considered as complexes which can be discussed in terms of closed-shell orbital interactions. The Cl 5 W − L bond energies are rather low, because there is strong repulsion between the occupied orbitals of the fragments. The breakdown of the donor-acceptor interactions into orbital contributions shows that acetylene is a four-electron donor in WCl 5 (HCCH) − , while it is a two-electron donor in W(CO) 5 (HCCH). The donation from the out-of-plane CC-bonding π orbital of acetylene is the reason why WCl 5 (HCCH) − is a stable (isolable) compound. This orbital is not available for ethylene, and thus WCl 5 (C 2 H 4 ) is predicted to have a weak tungsten-ethylene bond.

[1]  G. Frenking,et al.  Struktur und Bindungsverhältnisse der Übergangsmetall‐Diwasserstoffkomplexe [M(CO)5(H2)] (M = Cr, Mo, W) , 1995 .

[2]  J. Almlöf,et al.  Exploiting non-abelian point group symmetry in direct two-electron integral transformations , 1991 .

[3]  G. Dobson,et al.  Infrared Spectra and Structures of Metal Carbonyl Derivatives. III. Acetylene and Olefin Derivatives of Group VI Metal Carbonyls , 1963 .

[4]  W. Goddard,et al.  Dichlorotitanacyclopropane. The Structure and Reactivity of a Metallacyclopropane , 1985 .

[5]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[6]  M. Hall,et al.  Theoretical comparison between nucleophilic and electrophilic transition metal carbenes using generalized molecular orbital and configuration interaction methods , 1984 .

[7]  G. Frenking,et al.  Structure and Bonding of the Transition-Metal Carbonyl Complexes M(CO)5L (M = Cr, Mo, W) and M(CO)3L (M = Ni, Pd, Pt; L = CO, SiO, CS, N2, NO+, CN-, NC-, HCCH, CCH2, CH2, CF2, H2)1 , 1996 .

[8]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[9]  R. Hoffmann,et al.  Structural and theoretical evidence for participation of the second acetylene .pi. orbital in transition metal alkyne complexes , 1982 .

[10]  Dietmar Seyferth,et al.  Comprehensive Organometallic Chemistry , 1984 .

[11]  Gernot Frenking,et al.  Theoretical Studies of Organometallic Compounds. XIX. Complexes of Transition Metals in High and Low Oxidation States with Side-On-Bonded .pi.-Ligands , 1995 .

[12]  G. Frenking,et al.  Structure and Bonding of Transition Metal Dihydrogen Complexes [M(CO)5(H2)] (M = Cr, Mo, W)†‡ , 1995 .

[13]  E. Veen Low-energy electron-impact spectroscopy on ethylene , 1976 .

[14]  G. Frenking,et al.  Structures and Bond Energies of the Transition-Metal Carbonyls M(CO)5 (M = Fe, Ru, Os) and M(CO)4 (M = Ni, Pd, Pt) , 1995 .

[15]  L. Hegedus Comprehensive organometallic chemistry II , 1995 .

[16]  G. Frenking,et al.  Structures and Bond Energies of the Transition Metal Hexacarbonyls M(CO)6 (M = Cr, Mo, W). A Theoretical Study , 1994 .

[17]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[18]  G. Frenking,et al.  Theoretical studies of organometallic compounds. 5. Alkyne and vinylidene complexes of molybdenum and tungsten in high-oxidation states. , 1993 .

[19]  J. Sancho,et al.  Tantalacyclopentane complexes and their role in the catalytic dimerization of olefins , 1980 .

[20]  Hans Horn,et al.  Prescreening of two‐electron integral derivatives in SCF gradient and Hessian calculations , 1991 .

[21]  J. Pople,et al.  Møller–Plesset theory for atomic ground state energies , 1975 .

[22]  M. D. Cooke,et al.  Transition Metal Carbene Complexes , 1983 .

[23]  A. Kuppermann,et al.  Singlet → triplet transitions in methyl-substituted ethylenes , 1975 .

[24]  G. Frenking,et al.  Copper-substituted ethanes as a model for copper-acetylene interactions on the metal surface Quantum mechanical study of the structure and bonding of copper-acetylene and copper-ethylene compounds Cun(C2H2) (n = 1, 2, 4), Cu(C2H2) +, Cun(C2H4 (n = 1, 2) and Cu(C2H4)+1,2☆ , 1996 .

[25]  George Vacek,et al.  Low-lying triplet electronic states of acetylene:cis3B2 and3A2,trans3Bu and3Au , 1993 .

[26]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[27]  J. S. Binkley,et al.  Electron correlation theories and their application to the study of simple reaction potential surfaces , 1978 .

[28]  D. Fenske,et al.  Unsymmetrisch substituierte Alkinkomplexe von Wolfram(IV). Die Kristallstruktur von PPh4[WCl5(HCCPh)]·CH2Cl2 , 1988 .

[29]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[30]  G. Erker,et al.  Equilibrium between metallaindans and aryne olefin-metal complexes , 1979 .

[31]  H. Fischer,et al.  Ein einfacher syntheseweg für cyclobutenylidenwolfram-komplexe—struktur von Pentacarbonyl(phenylacetylen) wolfram , 1995 .

[32]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[33]  K. Dehnicke,et al.  [WCl4(Me3Si-C≡C-SiMe3)]2 Synthese, IR-Spektrum und Kristallstruktur , 1984 .

[34]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[35]  Olga Kennard,et al.  Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals , 1989 .

[36]  J. Ibers,et al.  Coordination of Unsaturated Molecules to Transition Metals , 1976 .

[37]  Mark S. Gordon,et al.  The isomers of silacyclopropane , 1980 .

[38]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[39]  Gernot Frenking,et al.  Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals , 1995 .

[40]  G. Frenking,et al.  The calculation of bond dissociation energies of transition metal complexes using isostructural reactions , 1995 .

[41]  G. Frenking,et al.  Theoretical studies of the M–CO bond lengths and first dissociation energies of the transition metal hexacarbonyls Cr(CO)6, Mo(CO)6 and W(CO)6 , 1993 .

[42]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[43]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[44]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .