In Search for the Optimization Algorithm

In this chapter, we provide the necessary foundation for completely design and implement SVM optimization algorithm. The concepts are described so that those can be broadly applied to general-purpose optimization problems.

[1]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[2]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[3]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[4]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[5]  Inge Koch,et al.  Penalised spline support vector classifiers: computational issues , 2008, Comput. Stat..

[6]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[7]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[8]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[9]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[10]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[11]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[12]  W. Karush Minima of Functions of Several Variables with Inequalities as Side Conditions , 2014 .

[13]  Michael C. Ferris,et al.  Interior-Point Methods for Massive Support Vector Machines , 2002, SIAM J. Optim..

[14]  Katya Scheinberg,et al.  Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..

[15]  A. Hoffman,et al.  Computational Experience in Solving Linear Programs , 2017 .

[16]  G. Strang Introduction to Linear Algebra , 1993 .