Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production

[1]  S. Barnett,et al.  Cobalt-substituted SrTi0.3Fe0.7O3−δ: a stable high-performance oxygen electrode material for intermediate-temperature solid oxide electrochemical cells , 2018 .

[2]  J. M. Serra,et al.  Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss , 2017 .

[3]  Ping Liu,et al.  Tuning Selectivity of CO2 Hydrogenation Reactions at the Metal/Oxide Interface. , 2017, Journal of the American Chemical Society.

[4]  E. Miller,et al.  Tape Casting of High-Performance Low-Temperature Solid Oxide Cells with Thin La0.8Sr0.2Ga0.8Mg0.2O3-δ Electrolytes and Impregnated Nano Anodes. , 2017, ACS applied materials & interfaces.

[5]  H. Matsumoto,et al.  Physicochemical properties of proton-conductive Ba(Zr0.1Ce0.7Y0.1Yb0.1)O3−δ solid electrolyte in terms of electrochemical performance of solid oxide fuel cells , 2016 .

[6]  J. M. Serra,et al.  Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor , 2016, Science.

[7]  P. Strasser,et al.  An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes , 2016 .

[8]  N. Sullivan,et al.  Exploring electronic conduction through BaCexZr0.9−xY0.1O3−d proton-conducting ceramics , 2016 .

[9]  R. Kee,et al.  Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers , 2016 .

[10]  Shumin Fang,et al.  Steam electrolysis in a solid oxide electrolysis cell fabricated by the phase-inversion tape casting method , 2015 .

[11]  R. Kee,et al.  Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics. , 2015, Faraday discussions.

[12]  Ali Almansoori,et al.  Readily processed protonic ceramic fuel cells with high performance at low temperatures , 2015, Science.

[13]  N. Sullivan,et al.  Characterization of ionic transport through BaCe0.2 Zr0.7Y0.1O3−δ membranes in galvanic and electrolytic operation , 2015 .

[14]  Zhan Gao,et al.  Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4 , 2015 .

[15]  Yucheng Wu,et al.  Composite manganate oxygen electrode enhanced with iron oxide nanocatalyst for high temperature steam electrolysis in a proton-conducting solid oxide electrolyzer , 2015 .

[16]  Sally M. Benson,et al.  Hydrogen or batteries for grid storage? A net energy analysis , 2015 .

[17]  Ludger Blum,et al.  Performance and Degradation of Solid Oxide Electrolysis Cells in Stack , 2015 .

[18]  S. Barnett,et al.  Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage , 2015 .

[19]  X. Ye,et al.  High performance of intermediate temperature solid oxide electrolysis cells using Nd2NiO4+δ impregnated scandia stabilized zirconia oxygen electrode , 2015 .

[20]  Kui Xie,et al.  Composite oxygen electrode LSM-BCZYZ impregnated with Co3O4 nanoparticles for steam electrolysis in a proton-conducting solid oxide electrolyzer , 2013 .

[21]  Yuyan Shao,et al.  Oxygen Electrocatalysts for Water Electrolyzers and Reversible Fuel Cells: Status and Perspective , 2012 .

[22]  Miguel A. Laguna-Bercero,et al.  Steam Electrolysis Using a Microtubular Solid Oxide Fuel Cell , 2010 .

[23]  T. Ishihara,et al.  Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte , 2010 .

[24]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[25]  N. Bonanos,et al.  Water vapour solubility and conductivity study of the proton conductor BaCe(0.9―x)ZrxY0.1O(3―δ) , 2009 .

[26]  S. Jensen,et al.  Hydrogen and synthetic fuel production from renewable energy sources , 2007 .

[27]  H. Kageyama,et al.  Transport properties of Ba (Zr0.8Y0.2)O3- δ perovskite , 2007 .

[28]  J. Frade Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction , 1995 .

[29]  Ryan O'Hayre,et al.  Defect Incorporation and Transport within Dense BaZr0.8Y0.2O3 − δ(BZY20) Proton-Conducting Membranes , 2018 .

[30]  R. Kee,et al.  Modeling Protonic-Ceramic Fuel Cells with Porous Composite Electrodes in a Button-Cell Configuration , 2017 .

[31]  Kui Xie,et al.  A scandium-doped manganate anode for a proton-conducting solid oxide steam electrolyzer , 2016 .

[32]  R. Kee,et al.  Interpretation of Defect and Gas-Phase Fluxes through Mixed-Conducting Ceramics Using Nernst–Planck–Poisson and Integral Formulations , 2014 .

[33]  R. Kee,et al.  Modeling the Steady-State and Transient Response of Polarized and Non-Polarized Proton-Conducting Doped-Perovskite Membranes , 2013 .

[34]  Jason Marcinkoski,et al.  DOE Hydrogen and Fuel Cells Program , 2012 .

[35]  Kui Xie,et al.  Composite Oxygen Electrode Based on LSCF and BSCF for Steam Electrolysis in a Proton-Conducting Solid Oxide Electrolyzer , 2012 .