Reversible crystal growth–dissolution and aggregation–breakage: numerical and moment solutions for population balance equations

A general population balance equation (PBE) is proposed to describe combined monomer addition and dissociation (growth and dissolution) and aggregation and fragmentation. The reversible distribution kinetics has applications to a range of natural and manufacturing phenomena, including crystal growth or dissolution with agglomeration and/or breakage. A numerical solution to the PBE shows the evolution to a steady-state crystal size. The model allows assessment of various parameters, such as the fragmentation kernel, initial particle size distribution, and the aggregation rate. Interfacial energy, through the Gibbs–Thomson effect, has a strong influence on crystal growth–dissolution and denucleation of subcritical nuclei. The denucleation rate as a function of breakage rate coefficient was found to follow a power-law relationship.

[1]  S. Veesler,et al.  Agglomeration of gibbsite Al(OH)3 crystals in Bayer liquors. Influence of the process parameters , 1998 .

[2]  Margaritis Kostoglou,et al.  An assessment of low-order methods for solving the breakage equation , 2002 .

[3]  B. J. McCoy,et al.  Denucleation rates during Ostwald ripening: Distribution kinetics of unstable clusters , 2002 .

[4]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[5]  Michael J. Hounslow,et al.  Tracer studies of high‐shear granulation: II. Population balance modeling , 2001 .

[6]  René David,et al.  Modelling of agglomeration in industrial crystallization from solution , 1995 .

[7]  John A. Dodds,et al.  Prediction of the product size distribution in associations of stirred bead mills , 1998 .

[8]  B. J. McCoy,et al.  Ostwald ripening with size-dependent rates: Similarity and power-law solutions , 2002 .

[9]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[10]  B. J. McCoy,et al.  Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence. , 2003, Journal of colloid and interface science.

[11]  S. Kaliaguine,et al.  Alumina trihydrate crystallization. Part 2. A model of agglomeration , 1976 .

[12]  David Mautner Himmelblau,et al.  Process Analysis and Simulation. Deterministic Systems , 1968 .

[13]  M. Zinke–Allmang,et al.  Rate equation approach to the late stages of cluster ripening , 1998 .

[14]  Benjamin J. McCoy,et al.  Discrete and continuous models for polymerization and depolymerization , 2001 .

[15]  W. Harmon Ray,et al.  On the Mathematical Modeling of Polymerization Reactors , 1972 .

[16]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[17]  Alan Jones,et al.  Experimental investigation into dynamics and stability of continuous MSMPR agglomerative precipitation of CaCO3 crystals , 1997 .

[18]  K. Shinohara,et al.  Fine-grinding characteristics of hard materials by attrition mill , 1999 .

[19]  P. Hamill,et al.  A time-dependent approach to the kinetics of homogeneous nucleation , 1996 .

[20]  B. J. McCoy,et al.  Dynamics of crystal size distributions with size-dependent rates , 2002 .

[21]  Anastasios J. Karabelas Particle attrition in shear flow of concentrated slurries , 1976 .

[22]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[23]  J. Smith,et al.  Continuous kinetics for thermal degradation of polymer in solution , 1995 .

[24]  Alexander Penlidis,et al.  Mathematical Modeling of Multicomponent Chain-Growth Polymerizations in Batch, Semibatch, and Continuous Reactors: A Review , 1997 .

[25]  M. Hounslow,et al.  A discretized population balance for nucleation, growth, and aggregation , 1988 .

[26]  René David,et al.  Crystallization and precipitation engineering—III. A discrete formulation of the agglomeration rate of crystals in a crystallization process , 1991 .

[27]  B. J. McCoy,et al.  Distribution kinetics of thermolytic macromolecular reactions , 2001 .

[28]  Benjamin J. McCoy,et al.  Distribution kinetics theory of Ostwald ripening , 2001 .

[29]  Denis Mangin,et al.  Modelling gibbsite agglomeration in a constant supersaturation crystallizer , 2000 .

[30]  E. Ruckenstein,et al.  OSTWALD RIPENING : A STOCHASTIC APPROACH , 1995 .

[31]  A. Randolph,et al.  A population balance for countable entities , 1964 .

[32]  N. Amundson,et al.  Breakage and Coalescence in Dispersed Phase Systems , 1966 .

[33]  D. Trimm,et al.  New technology for hydrogen production by the catalytic oxidation and steam reforming of methanol at low temperatures , 1995 .

[34]  Neil A. Dotson,et al.  Polymerization Process Modeling , 1995 .

[35]  Robert M. Ziff AGGREGATION KINETICS VIA SMOLUCHOWSKI'S EQUATION , 1984 .

[36]  B. J. McCoy,et al.  Temperature effects for crystal growth: a distribution kinetics approach , 2003 .

[37]  B. J. McCoy,et al.  Evolution to similarity solutions for fragmentation and aggregation , 1998 .

[38]  Kazunori Sato,et al.  Breakage of coals in ring-roller mills Part I. The breakage properties of various coals and simulation model to predict steady-state mill performance , 1996 .

[39]  B. J. McCoy,et al.  Molecular‐weight distribution kinetics for ultrasonic reactions of polymers , 2001 .

[40]  Michael J. Hounslow,et al.  A micro-mechanical model for the rate of aggregation during precipitation from solution , 2001 .

[41]  A. Mersmann,et al.  The brittleness of substances crystallized in industrial processes , 1995 .

[42]  Patrick T. Spicer,et al.  Coagulation and fragmentation: Universal steady‐state particle‐size distribution , 1996 .

[43]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[44]  J. Smith,et al.  Degradation of poly(methyl methacrylate) in solution , 1996 .

[45]  A. Mersmann Crystallization Technology Handbook , 2001 .

[46]  B. J. McCoy,et al.  Distribution kinetics of radical mechanisms: Reversible polymer decomposition , 1997 .

[47]  E. T. White,et al.  Agglomeration during precipitation: agglomeration mechanism identification for Al(OH)3 crystals in stirred caustic aluminate solutions , 1994 .

[48]  Kazunori Sato,et al.  Breakage of coals in ring-roller mills Part 2. An unsteady-state simulation model , 1998 .

[49]  B. J. McCoy Cluster kinetics for glassforming materials , 2002 .