The Arithmetic of the even and the odd

We present several formal theories for the arithmetic of the even and the odd, show that the irrationality of $\sqrt 2$ can be proved in one of them, that the proof must involve contradiction, and prove that the irrationality of $\sqrt {17}$ cannot be proved inside any formal theory of the even and the odd.

[1]  M. Burnyeat The Philosophical Sense of Theaetetus' Mathematics , 1978, Isis.

[2]  Kevin Windle,et al.  Pythagoras and the Early Pythagoreans , 2012 .

[3]  COMPRENDRE LES MATHÉMATIQUES POUR COMPRENDRE PLATON - THÉÉTÈTE (147d-148b) , 2014 .

[4]  B. Artmann A proof for Theodorus' theorem by drawing diagrams , 1994 .

[5]  What's wrong with Euclid Book V , 2008 .

[6]  M. Burnyeat Archytas and Optics , 2005, Science in Context.

[7]  Emil Jerábek,et al.  Sequence encoding without induction , 2012, Math. Log. Q..

[8]  W. Knorr The Evolution of the Euclidean Elements , 1975 .

[9]  Maurice Caving The Debate between H.G. Zeuthen and H. Vogt (1909‐1915) on the Historical Source of the Knowledge of Irrational Quantities* , 1996 .

[10]  Victor Pambuccian A Problem in Pythagorean Arithmetic , 2018, Notre Dame J. Formal Log..

[11]  Bartel van den Waerden Die Arithmetik der Pythagoreer. I , 1947 .

[12]  Wilbur Richard Knorr,et al.  The Evolution of the Euclidean Elements: A Study of the Theory of Incommensurable Magnitudes and Its Significance for Early Greek Geometry , 1974 .

[13]  C. Huffman,et al.  "Archytas of Tarentum. Pythagorean, philosopher and mathematician king", Carl A. Huffman, Cambridge 2005 : [recenzja] / Jacek Rodzeń. , 2005 .

[14]  Philolaus,et al.  Philolaus of Croton: Pythagorean and Presocratic , 1993 .

[15]  Oskar Becker Grundlagen der Mathematik in geschichtlicher Entwicklung , 1956 .

[16]  S. Heller EIN BEITRAG ZUR DEUTUNG DER THEODOROS-STELLE IN PLATONS DIALOG «THEAETET» , 1956 .

[17]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.