A hierarchy of topological systems with completely positive entropy

We define a hierarchy of systems with topological completely positive entropy in the context of countable amenable continuous group actions on compact metric spaces. For each countable ordinal we construct a dynamical system on the corresponding level of the aforementioned hierarchy and provide subshifts of finite type for the first three levels. We give necessary and sufficient conditions for entropy pairs by means of the asymptotic relation on systems with the pseudo-orbit tracing property, and thus create a bridge between a result by Pavlov and a result by Meyerovitch. As a corollary, we answer negatively an open question by Pavlov regarding necessary conditions for completely positive entropy.

[1]  Jstor,et al.  Proceedings of the American Mathematical Society , 1950 .

[2]  Rufus Bowen,et al.  On axiom A diffeomorphisms , 1975 .

[3]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[4]  U. Bader,et al.  Ergodic Theory and Dynamical Systems , 2013 .

[5]  P. Oprocha Shadowing in multi-dimensional shift spaces , 2008 .

[6]  Hanfeng Li,et al.  Homoclinic groups, IE groups, and expansive algebraic actions , 2011, 1103.1567.

[7]  Pointwise theorems for amenable groups , 1999 .

[8]  Colloquium Mathematicum COLLOQUIUM MATHEMATICUM , 2004 .

[9]  P. Walters On the pseudo orbit tracing property and its relationship to stability , 1978 .

[10]  F. Blanchard A disjointness theorem involving topological entropy , 1993 .

[11]  K. Schmidt,et al.  ESITheErwinSchrodingerInternational InstituteforMathematicalPhysics Boltzmanngasse9 A-1090Wien,Austria HomoclinicPointsofAlgebraicZd{Actions , 2022 .

[12]  Numérisation de documents anciens mathématiques Bulletin de la Société Mathématique de France , 1873 .

[13]  E. Glasner,et al.  Local entropy theory , 2009, Ergodic Theory and Dynamical Systems.

[14]  David Kerr,et al.  Independence in topological and C*-dynamics , 2006 .

[15]  Entropy pair realization , 2019, 1904.01285.

[16]  E. Lindenstrauss Pointwise theorems for amenable groups , 1999 .

[17]  T. Downarowicz,et al.  Topological entropy zero and asymptotic pairs , 2012 .

[18]  K. Schmidt The cohomology of higher-dimensional shifts of finite type , 1995 .

[19]  Wen Huang,et al.  Asymptotic pairs, stable sets and chaos in positive entropy systems , 2014, 1409.0275.

[20]  C. Caramanis What is ergodic theory , 1963 .

[21]  R. Pavlov Topologically completely positive entropy and zero-dimensional topologically completely positive entropy , 2015, Ergodic Theory and Dynamical Systems.

[22]  Keonhee Lee,et al.  Topological stability and pseudo-orbit tracing property of group actions , 2016, 1611.08994.

[23]  F. Blanchard,et al.  Asymptotic pairs in positive-entropy systems , 2002, Ergodic Theory and Dynamical Systems.

[24]  R. Pavlov A characterization of topologically completely positive entropy for shifts of finite type , 2013, Ergodic Theory and Dynamical Systems.

[25]  S. Crawford,et al.  Volume 1 , 2012, Journal of Diabetes Investigation.

[26]  Tom Meyerovitch Pseudo-orbit tracing and algebraic actions of countable amenable groups , 2017, Ergodic Theory and Dynamical Systems.

[27]  F. Blanchard Fully positive topological entropy and topological mixing , 1991 .

[28]  X. Ye,et al.  A minimal completely positive entropy non-uniformly positive entropy example , 2009 .

[29]  K. Schmidt,et al.  Homoclinic points of algebraic ℤ^{}-actions , 1999 .

[30]  Ethan Akin,et al.  The general topology of dynamical systems , 1993 .

[31]  A. Gumel Journal of Difference Equations and Applications: Preface , 2003 .