Adaptive mixed finite element methods for Darcy flow in fractured porous media

In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

[1]  Mats G. Larson,et al.  CHALMERS FINITE ELEMENT CENTER , 2022 .

[2]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..

[3]  J. Gómez-Hernández,et al.  Upscaling hydraulic conductivities in heterogeneous media: An overview , 1996 .

[4]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[5]  Mary F. Wheeler,et al.  Discontinuous Galerkin methods for simulating bioreactive transport of viruses in porous media , 2007 .

[6]  M. F. Lough,et al.  A new method to calculate the effective permeability of grid blocks used in the simulation of naturally fractured reservoirs , 1997 .

[7]  R. Arnett,et al.  Modelling fluid flow in fractured‐porous rock masses by finite‐element techniques , 1984 .

[8]  M. Wheeler,et al.  Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport , 2006 .

[9]  Rolf Stenberg,et al.  Energy norm a posteriori error estimates for mixed finite element methods , 2006, Math. Comput..

[10]  Shuyu Sun,et al.  Compositional modeling of three‐phase flow with gravity using higher‐order finite element methods , 2011 .

[11]  Jean E. Roberts,et al.  Modeling fractures as interfaces: a model for Forchheimer fractures , 2008 .

[12]  A. Firoozabadi,et al.  An efficient numerical model for multicomponent compressible flow in fractured porous media , 2014 .

[13]  T. Hou,et al.  Analysis of upscaling absolute permeability , 2002 .

[14]  Jianchao Cai,et al.  FRACTAL ANALYSIS OF FRACTURE INCREASING SPONTANEOUS IMBIBITION IN POROUS MEDIA WITH GAS-SATURATED , 2013 .

[15]  Vincent Martin,et al.  Modeling Fractures and Barriers as Interfaces for Flow in Porous Media , 2005, SIAM J. Sci. Comput..

[16]  M. Oda,et al.  Permeability tensor for discontinuous rock masses , 1985 .

[17]  Yalchin Efendiev,et al.  Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method , 2015, GEM - International Journal on Geomathematics.

[18]  Alessio Fumagalli,et al.  A reduced model for Darcy’s problem in networks of fractures , 2014 .

[19]  M. F. Lough,et al.  Hierarchical modeling of flow in naturally fractured formations with multiple length scales , 2001 .

[20]  Chen Dong Numerical Modeling of Contaminant Transport in Fractured Porous Media using Mixed Finite Element and Finite Volume Methods , 2011 .

[21]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[22]  Yu-Shu Wu,et al.  A multiple-porosity method for simulation of naturally fractured petroleum reservoirs , 1988 .

[23]  Hussein Hoteit,et al.  An efficient numerical model for incompressible two-phase flow in fractured media , 2008 .

[24]  T. N. Narasimhan,et al.  A PRACTICAL METHOD FOR MODELING FLUID AND HEAT FLOW IN FRACTURED POROUS MEDIA , 1985 .

[25]  J. Noorishad,et al.  An upstream finite element method for solution of transient transport equation in fractured porous media , 1982 .

[26]  C. D'Angelo,et al.  A mixed finite element method for Darcy flow in fractured porous media with non-matching grids , 2012 .

[27]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[28]  Hussein Hoteit,et al.  Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media , 2005 .

[29]  J. E. Warren,et al.  The Behavior of Naturally Fractured Reservoirs , 1963 .

[30]  L. Durlofsky,et al.  Generation of coarse‐scale continuum flow models from detailed fracture characterizations , 2006 .

[31]  L. Durlofsky Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .

[32]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[33]  Patrick Jenny,et al.  A hierarchical fracture model for the iterative multiscale finite volume method , 2011, J. Comput. Phys..

[34]  Shuyu Sun,et al.  Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium , 2009, SIAM J. Numer. Anal..

[35]  Mary F. Wheeler,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media , 2005, SIAM J. Numer. Anal..

[36]  Contaminant Flow and Transport Simulation in Cracked Porous Media using Locally Conservative Schemes , 2012 .

[37]  Seong H. Lee,et al.  Efficient Field-Scale Simulation of Black Oil in a Naturally Fractured Reservoir Through Discrete Fracture Networks and Homogenized Media , 2008 .

[38]  M. F. Lough,et al.  Efficient Finite-Difference Model for Flow in a Reservoir With Multiple Length-Scale Fractures , 2000 .

[39]  Xiaoping Xie,et al.  Residual-based a posteriori error estimation for multipoint flux mixed finite element methods , 2013, Numerische Mathematik.