Bilinear Immersed Finite Elements for Interface Problems

(ABSTRACT) In this dissertation we discuss bilinear immersed finite elements (IFE) for solving interface problems. The related research works can be categorized into three aspects: (1) the construction of the bilinear immersed finite element spaces; (2) numerical methods based on these IFE spaces for solving interface problems; and (3) the corresponding error analysis. All of these together form a solid foundation for the bilinear IFEs. The research on immersed finite elements is motivated by many real world applications, in which a simulation domain is often formed by several materials separated from each other by curves or surfaces while a mesh independent of interface instead of a body-fitting mesh is preferred. The bilinear IFE spaces are nonconforming finite element spaces and the mesh can be independent of interface. The error estimates for the interpolation of a Sobolev function in a bilinear IFE space indicate that this space has the usual approximation capability expected from bilinear polynomials, which is O(h 2) in L 2 norm and O(h) in H 1 norm. Then the immersed spaces are applied in Galerkin, finite volume element (FVE) and discontinuous Galerkin (DG) methods for solving interface problems. Numerical examples show that these methods based on the bilinear IFE spaces have the same optimal convergence rates as those based on the standard bilinear finite element for solutions with certain smoothness. For the symmetric selective immersed discontinuous Galerkin method based on bilinear IFE, we have established its optimal convergence rate. For the Galerkin method based on bilinear IFE, we have also established its convergence. One of the important advantages of the discontinuous Galerkin method is its flexibility for both p and h mesh refinement. Because IFEs can use a mesh independent of interface, such as a structured mesh, the combination of a DG method and IFEs allows a flexible adaptive mesh independent of interface to be used for solving interface problems. That is, a mesh independent of interface can be refined wherever needed, such as around the interface and the singular source. We also develop an efficient selective immersed discontinuous Galerkin method. It uses the sophisticated discontinuous Galerkin formulation only around the locations needed, but uses the simpler Galerkin formulation everywhere else. This selective formulation leads to an algebraic system with far less unknowns than the immersed DG method without scarifying the accuracy; hence it is far more efficient than the conventional discontinuous Galerkin formulations. Acknowledgments First of all, …

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[3]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[4]  I. Babuska The Finite Element Method with Penalty , 1973 .

[5]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[6]  Charles S. Peskin,et al.  Flow patterns around heart valves , 1973 .

[7]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[8]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[9]  D. R. Criswell,et al.  Surveyor observations of lunar horizon-glow , 1974 .

[10]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[11]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[12]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[13]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[14]  A. A. Samarskiĭ,et al.  Méthodes aux différences pour équations elliptiques , 1978 .

[15]  L. M. Delves,et al.  An Implicit Matching Principle for Global Element Calculations , 1979 .

[16]  Gilbert A. Hegemier,et al.  Finite Element Method for Interface Problems , 1982 .

[17]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[18]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[19]  I. Babuska,et al.  Finite Element Methods for the Solution of Problems with Rough Input Data. , 1985 .

[20]  Miloslav Feistauer,et al.  Finite element solution of nonlinear elliptic problems , 1987 .

[21]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[22]  D. Rose,et al.  Some errors estimates for the box method , 1987 .

[23]  B. Heinrich Finite Difference Methods on Irregular Networks , 1987 .

[24]  Qun Lin,et al.  Acceleration of the convergence in finite difference method by predictor-corrector and splitting extrapolation method , 1987 .

[25]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[26]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[27]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[28]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[29]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[30]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[31]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[32]  Alexandre Joel Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations* , 1989 .

[33]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[34]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 1 Physical Origins and Classical Methods , 1990 .

[35]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[36]  Zhiqiang Cai,et al.  On the accuracy of the finite volume element method for diffusion equations on composite grids , 1990 .

[37]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[38]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[39]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[40]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[41]  Todd E. Peterson,et al.  A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .

[42]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[43]  T. Hou,et al.  Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries , 1993 .

[44]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[45]  T. F. Russell,et al.  Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis , 1994 .

[46]  Xiaofeng Ren,et al.  On a two-dimensional elliptic problem with large exponent in nonlinearity , 1994 .

[47]  I. Babuska,et al.  Special finite element methods for a class of second order elliptic problems with rough coefficients , 1994 .

[48]  V. J. Friedly,et al.  Particle simulation of ion optics and grid erosion for two‐grid and three‐grid systemsa) , 1994 .

[49]  C. Liem,et al.  The Splitting Extrapolation Method: A New Technique in Numerical Solution of Multidimensional Problems , 1995 .

[50]  Martin P. Bendsøe,et al.  Optimization of Structural Topology, Shape, And Material , 1995 .

[51]  Masakatsu Nakano,et al.  An efficient three-dimensional optics code for ion thruster research , 1996 .

[52]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[53]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[54]  J. Haslinger,et al.  Finite Element Approximation for Optimal Shape, Material and Topology Design , 1996 .

[55]  Liu Xiaoqi A MULTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM FOR PARABOLIC PROBLEM , 1996 .

[56]  Dennis W. Hewett,et al.  The Embedded Curved Boundary Method for Orthogonal Simulation Meshes , 1997 .

[57]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[58]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[59]  Tao Lü,et al.  Splitting extrapolation based on domain decomposition for finite element approximations , 1997 .

[60]  Lu Tao,et al.  A MUCLTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM , 1997 .

[61]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[62]  Ulrich Rüde,et al.  Multi-parameter extrapolation methods for boundary integral equations , 1998, Adv. Comput. Math..

[63]  Xh,et al.  A MULTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM FOR ELLIPTIC EIGENVALUE PROBLEM , 1998 .

[64]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[65]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[66]  Iain D. Boyd,et al.  Monte Carlo Simulation of Neutral Xenon Flows in Electric Propulsion Devices , 1998 .

[67]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[68]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[69]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[70]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[71]  I. Babuska,et al.  A discontinuous hp finite element method for diffusion problems: 1-D analysis☆ , 1999 .

[72]  Zhilin Li,et al.  The immersed finite volume element methods for the elliptic interface problems , 1999 .

[73]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[74]  Richard S. Falk,et al.  Explicit Finite Element Methods for Symmetric Hyperbolic Equations , 1999 .

[75]  Richard E. Ewing,et al.  Element Approximations of Nonlocal in Time One � dimensional Flows in Porous Media , 1998 .

[76]  Bernard Grossman,et al.  Progressive optimization of inverse fluid dynamic design problems , 2000 .

[77]  J. Li,et al.  Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method , 2000 .

[78]  Thomas J. R. Hughes,et al.  A comparison of discontinuous and continuous Galerkin methods bases on error estimates, conservation, robustness and efficiency , 2000 .

[79]  Ronghua Li Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods , 2000 .

[80]  J. Tinsley Oden,et al.  An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics , 2000 .

[81]  John E. Osborn,et al.  Can a finite element method perform arbitrarily badly? , 2000, Math. Comput..

[82]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[83]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[84]  Yanping Lin,et al.  A rectangular immersed finite element space for interface problems , 2001 .

[85]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[86]  Paul J. Wilbur,et al.  Numerical simulation of ion beam optics for many-grid systems , 2001 .

[87]  Z. Chen,et al.  On the relationship of various discontinuous finite element methods for second-order elliptic equations , 2001, J. Num. Math..

[88]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[89]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[90]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[91]  Hong Wang,et al.  A summary of numerical methods for time-dependent advection-dominated partial differential equations , 2001 .

[92]  James P. Keener,et al.  Immersed Interface Methods for Neumann and Related Problems in Two and Three Dimensions , 2000, SIAM J. Sci. Comput..

[93]  Ilaria Perugia,et al.  On the Coupling of Local Discontinuous Galerkin and Conforming Finite Element Methods , 2001, J. Sci. Comput..

[94]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[95]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[96]  T. Lin,et al.  An Immersed Finite Element Electric Field Solver for Ion Optics Modeling , 2002 .

[97]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[98]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[99]  D. Calhoun A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions , 2002 .

[100]  Tao Lin,et al.  On the Accuracy of the Finite Volume Element Method Based on Piecewise Linear Polynomials , 2001, SIAM J. Numer. Anal..

[101]  A. Dadone,et al.  An immersed body methodology for inviscid flows on Cartesian grids , 2002 .

[102]  Bernardo Cockburn,et al.  Approximation of the Velocity by Coupling Discontinuous Galerkin and Mixed Finite Element Methods for Flow Problems , 2002 .

[103]  Lü Tao,et al.  Splitting extrapolation for solving second order elliptic systems with curved boundary in R d by using d-quadratic isoparametric finite element , 2002 .

[104]  PAUL CASTILLO,et al.  Performance of Discontinuous Galerkin Methods for Elliptic PDEs , 2002, SIAM J. Sci. Comput..

[105]  Aihui Zhou,et al.  A Note on the Optimal L2-Estimate of the Finite Volume Element Method , 2002, Adv. Comput. Math..

[106]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[107]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[108]  Tao Lin,et al.  New Cartesian grid methods for interface problems using the finite element formulation , 2003, Numerische Mathematik.

[109]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[110]  Robert McOwen,et al.  Partial differential equations : methods and applications , 1996 .

[111]  Joseph Wang The Immersed Finite Element Method for Plasma Particle Simulations , 2003 .

[112]  Zhangxin Chen,et al.  Stability and convergence of mixed discontinuous finite element methods for second-order differential problems , 2003, J. Num. Math..

[113]  Andrea Toselli,et al.  An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems , 2000, Math. Comput..

[114]  Zhangxin Chen,et al.  Numerical study of the HP version of mixed discontinuous finite element methods for reaction‐diffusion problems: The 1D case , 2003 .

[115]  Derek M. Causon,et al.  Developments in Cartesian cut cell methods , 2003, Math. Comput. Simul..

[116]  Zhangxin Chen,et al.  Pointwise Error Estimates of Discontinuous Galerkin Methods with Penalty for Second-Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[117]  Bernardo Cockburn,et al.  A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[118]  Mats G. Larson,et al.  Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case , 2004, Numerische Mathematik.

[119]  Zhilin Li,et al.  An immersed finite element space and its approximation capability , 2004 .

[120]  Guido Kanschat Block Preconditioners for LDG Discretizations of Linear Incompressible Flow Problems , 2005, J. Sci. Comput..

[121]  Bernardo Cockburn,et al.  An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems , 2005, J. Sci. Comput..

[122]  Bernardo Cockburn,et al.  Error analysis of variable degree mixed methods for elliptic problems via hybridization , 2005, Math. Comput..

[123]  Hongsen Chen,et al.  Pointwise error estimates of the local discontinuous Galerkin method for a second order elliptic problem , 2004, Math. Comput..

[124]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[125]  Raytcho D. Lazarov,et al.  Error Estimates for a Finite Volume Element Method for Elliptic PDEs in Nonconvex Polygonal Domains , 2004, SIAM J. Numer. Anal..

[126]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.

[127]  Zhangxin Chen Finite Element Methods And Their Applications , 2005 .

[128]  Tzin Shaun Wang A Hermite Cubic Immersed Finite Element Space for Beam Design Problems , 2005 .

[129]  Kanschat Guido Block Preconditioners for LDG Discretizations of Linear Incompressible Flow Problems , 2005 .

[130]  R. Kafafy,et al.  Three‐dimensional immersed finite element methods for electric field simulation in composite materials , 2005 .

[131]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[132]  Dongwoo Sheen,et al.  Topology optimization using non‐conforming finite elements: three‐dimensional case , 2005 .

[133]  Stefan A. Sauter,et al.  Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients , 2006, Computing.

[134]  Weiwei Sun,et al.  Quadratic immersed finite element spaces and their approximation capabilities , 2006, Adv. Comput. Math..

[135]  Peter Hansbo,et al.  Piecewise divergence‐free discontinuous Galerkin methods for Stokes flow , 2006 .

[136]  Johnny Guzmán Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems , 2006, Math. Comput..

[137]  Shi,et al.  P1-NONCONFORMING QUADRILATERAL FINITE VOLUME ELEMENT METHOD AND ITS CASCADIC MULTIGRID ALGORITHM FOR ELLIPTIC PROBLEMS , 2006 .

[138]  M. Bendsøe,et al.  Topology optimization of heat conduction problems using the finite volume method , 2006 .

[139]  Ruo Li,et al.  Moving Mesh Discontinuous Galerkin Method for Hyperbolic Conservation Laws , 2006, J. Sci. Comput..

[140]  Eitan Tadmor,et al.  Non-Oscillatory Hierarchical Reconstruction for Central and Finite Volume Schemes , 2006 .

[141]  Shan Zhao,et al.  High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources , 2006, J. Comput. Phys..

[142]  Boo Cheong Khoo,et al.  An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries , 2006, J. Comput. Phys..

[143]  Guo-Wei Wei,et al.  On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method , 2006, J. Comput. Phys..

[144]  Huang,et al.  SPLITTING EXTRAPOLATIONS FOR SOLVING BOUNDARY INTEGRAL EQUATIONS OF LINEAR ELASTICITY DIRICHLET PROBLEMS ON POLYGONS BY MECHANICAL QUADRATURE METHODS , 2006 .

[145]  Ohannes A. Karakashian,et al.  Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[146]  Amine Ben El Haj Ali,et al.  A positivity preserving finite element–finite volume solver for the Spalart–Allmaras turbulence model , 2007 .

[147]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[148]  Slimane Adjerid,et al.  HIGHER-ORDER IMMERSED DISCONTINUOUS GALERKIN METHODS , 2007 .

[149]  Victor Ginting,et al.  Two-grid finite volume element method for linear and nonlinear elliptic problems , 2007, Numerische Mathematik.

[150]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations , 2007 .

[151]  Weiwei Sun,et al.  Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems , 2007 .

[152]  Xiaoming He,et al.  Splitting extrapolation method for solving second-order parabolic equations with curved boundaries by using domain decomposition and d-quadratic isoparametric finite elements , 2007, Int. J. Comput. Math..

[153]  Olga Stasová,et al.  Convergence Analysis of Finite Volume Scheme for Nonlinear Tensor Anisotropic Diffusion in Image Processing , 2007, SIAM J. Numer. Anal..

[154]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[155]  A. Meir,et al.  ON AN INTERFACE PROBLEM WITH A NONLINEAR JUMP CONDITION, NUMERICAL APPROXIMATION OF SOLUTIONS , 2007 .

[156]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[157]  Igor Mozolevski,et al.  hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation , 2007, J. Sci. Comput..

[158]  Stefan Vandewalle,et al.  Exact Integration Formulas for the Finite Volume Element Method on Simplicial Meshes , 2007 .

[159]  Thirupathi Gudi,et al.  Discontinuous Galerkin Methods for Quasi-Linear Elliptic Problems of Nonmonotone Type , 2007, SIAM J. Numer. Anal..

[160]  So-Hsiang Chou,et al.  Superconvergence of finite volume methods for the second order elliptic problem , 2007 .

[161]  Ronald Fedkiw,et al.  The immersed interface method. Numerical solutions of PDEs involving interfaces and irregular domains , 2007, Math. Comput..

[162]  Hongxing Rui,et al.  Uniform convergence of finite volume element method with Crouzeix-Raviart element for non-self-adjoint and indefinite elliptic problems , 2007 .

[163]  Bo Li,et al.  Immersed-Interface Finite-Element Methods for Elliptic Interface Problems with Nonhomogeneous Jump Conditions , 2007, SIAM J. Numer. Anal..

[164]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[165]  Tiegang Liu,et al.  An adaptive ghost fluid finite volume method for compressible gas-water simulations , 2008, J. Comput. Phys..

[166]  Xiaoming He,et al.  Approximation capability of a bilinear immersed finite element space , 2008 .

[167]  Xiu Ye Analysis and convergence of finite volume method using discontinuous bilinear functions , 2008 .

[168]  Christian Rohde,et al.  Local Discontinuous-Galerkin Schemes for Model Problems in Phase Transition Theory , 2008 .

[169]  Yan Xu,et al.  Local Discontinuous Galerkin Method for the Hunter--Saxton Equation and Its Zero-Viscosity and Zero-Dispersion Limits , 2008, SIAM J. Sci. Comput..

[170]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[171]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[172]  Xiaoming He,et al.  Modeling Electrostatic Levitation of Dust Particles on Lunar Surface , 2008, IEEE Transactions on Plasma Science.

[173]  Danping Yang,et al.  An upwind finite‐volume element scheme and its maximum‐principle‐preserving property for nonlinear convection–diffusion problem , 2008 .

[174]  Tongke Wang Alternating direction finite volume element methods for 2D parabolic partial differential equations , 2008 .

[175]  Danping Yang,et al.  Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations , 2008 .

[176]  Antony Jameson,et al.  The Construction of Discretely Conservative Finite Volume Schemes that Also Globally Conserve Energy or Entropy , 2008, J. Sci. Comput..

[177]  Brahim Amaziane,et al.  Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods , 2008 .

[178]  Jianxian Qiu,et al.  Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method , 2008 .

[179]  Kai Fan,et al.  A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions , 2008, J. Comput. Phys..

[180]  Tiao Lu,et al.  A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials , 2008 .

[181]  Johnny Guzmán Local and pointwise error estimates of the local discontinuous Galerkin method applied to the Stokes problem , 2008, Math. Comput..

[182]  Bernardo Cockburn,et al.  Error Estimates for the Runge-Kutta Discontinuous Galerkin Method for the Transport Equation with Discontinuous Initial Data , 2008, SIAM J. Numer. Anal..

[183]  Emmanuel Creusé,et al.  An hybrid finite volume-finite element method for variable density incompressible flows , 2008, J. Comput. Phys..

[184]  Gianmarco Manzini,et al.  A finite volume method for advection-diffusion problems in convection-dominated regimes , 2008 .

[185]  Thirupathi Gudi,et al.  hp-Discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems , 2008, Numerische Mathematik.

[186]  Roger Temam,et al.  Colocated finite volume schemes for fluid flows , 2008 .

[187]  Mary F. Wheeler,et al.  Coupling Discontinuous Galerkin and Mixed Finite Element Discretizations using Mortar Finite Elements , 2008, SIAM J. Numer. Anal..

[188]  V. Dolejší,et al.  Semi-Implicit Interior Penalty Discontinuous Galerkin Methods for Viscous Compressible Flows , 2008 .

[189]  Hongyun Wang,et al.  AN IMPROVED WPE METHOD FOR SOLVING DISCONTINUOUS FOKKER-PLANCK EQUATIONS , 2008 .

[190]  Francis Filbet,et al.  Convergence of a finite volume scheme for coagulation-fragmentation equations , 2007, Math. Comput..

[191]  Slimane Adjerid,et al.  A p-th degree immersed finite element for boundary value problems with discontinuous coefficients , 2009 .

[192]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[193]  Kaixin Wang A uniform optimal‐order estimate for an Eulerian‐Lagrangian discontinuous Galerkin method for transient advection–diffusion equations , 2009 .

[194]  Xiaoming He,et al.  A Bilinear Immersed Finite Volume Element Method For the Diffusion Equation with Discontinuous Coefficient , 2009 .

[195]  Martin P. Bendsøe Topology Optimization , 2009, Encyclopedia of Optimization.

[196]  Xiaoming He,et al.  A splitting extrapolation for solving nonlinear elliptic equations with d-quadratic finite elements , 2009, J. Comput. Phys..

[197]  Xiaoming He,et al.  An algorithm using the finite volume element method and its splitting extrapolation , 2011, J. Comput. Appl. Math..

[198]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .