Some results on Continuous dependence of fractal functions on the Sierpi\'nski gasket
暂无分享,去创建一个
T. Som | A. Prajapati | V. Agrawal | A. Sahu
[1] Saurabh Verma,et al. Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket , 2023, Fractional Calculus and Applied Analysis.
[2] Saurabh Verma,et al. Bernstein super fractal interpolation function for countable data systems , 2022, Numerical Algorithms.
[3] Subhash Chandra,et al. ON FRACTAL DIMENSIONS OF FRACTAL FUNCTIONS USING FUNCTION SPACES , 2022, Bulletin of the Australian Mathematical Society.
[4] R. Mohapatra,et al. Iteration of Operators with Contractive Mutual Relations of Kannan Type , 2022, Mathematics.
[5] Saurabh Verma,et al. Fractal interpolation function on products of the Sierpiński gaskets , 2022, Chaos, Solitons & Fractals.
[6] Saurabh Verma,et al. Vector-valued fractal functions: Fractal dimension and fractional calculus , 2022, Indagationes Mathematicae.
[7] Saurabh Verma,et al. Fractal dimension for a class of complex-valued fractal interpolation functions , 2022, 2204.03622.
[8] S. Abbas,et al. Analysis of fractal dimension of mixed Riemann-Liouville integral , 2022, Numerical Algorithms.
[9] A. Priyadarshi,et al. Graphs of continuous functions and fractal dimensions , 2022, Chaos, Solitons & Fractals.
[10] T. Som,et al. Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}^p$$\end{document}-Approximation Using Fractal Functio , 2022, Results in Mathematics.
[11] Saurabh Verma,et al. Fractal dimension of Katugampola fractional integral of vector-valued functions , 2021, The European Physical Journal Special Topics.
[12] A. Sahu,et al. Bounded variation on the Sierpinski Gasket , 2020, Fractals.
[13] SONG-IL Ri. Fractal functions on the Sierpinski Gasket , 2020 .
[14] A. Priyadarshi,et al. On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket , 2020 .
[15] S. Abbas,et al. THE CALCULUS OF BIVARIATE FRACTAL INTERPOLATION SURFACES , 2020, 2005.06241.
[16] P. Massopust,et al. Dimension preserving approximation , 2020, Aequationes mathematicae.
[17] R. Strichartz. Differential Equations on Fractals , 2018 .
[18] A. Priyadarshi. Lower bound on the Hausdorff dimension of a set of complex continued fractions , 2017 .
[19] S. A. Prasad. Node insertion in Coalescence Fractal Interpolation Function , 2013 .
[20] H. Ruan,et al. Some properties of fractal interpolation functions on Sierpinski gasket , 2011 .
[21] H. Ruan. FRACTAL INTERPOLATION FUNCTIONS ON POST CRITICALLY FINITE SELF-SIMILAR SETS , 2010 .
[22] M. Navascués. Fractal Polynomial Interpolation , 2005 .
[23] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[24] Michael F. Barnsley,et al. Fractal functions and interpolation , 1986 .
[25] Saurabh Verma,et al. Non-stationary zipper ˛ -fractal functions and associated fractal operator , 2022 .
[26] S. Jha,et al. Dimensional Analysis of α -Fractal Functions , 2021 .
[27] T. Som,et al. Fractal dimension of α -fractal function on the Sierpi´nski , 2021 .
[28] Derya Çelik,et al. Fractal interpolation on the Sierpinski Gasket , 2008 .
[29] R. Strichartz. ANALYSIS ON FRACTALS , 1999 .