Bringing epidemiology into the Semantic Web

Epidemiology is a domain of knowledge interconnected with many other domains, thus making it a good candidate for reusing existing ontologies that, despite having been created for different purposes, characterize information frequently manipulated by epidemiologists and public health scientists. This paper presents an evaluation of existing ontologies for the semantic annotation of epidemiological resources. We selected a set of ontologies and proposed a Network of Epidemiology-Related Ontologies (NERO), which can form the core of semantic annotation for data-intensive epidemiology-related information systems, such as epidemic forecasting infrastructures. To support this selection, we defined a set of requirements for inclusion of ontologies in NERO, based on good ontology practice, the interdisciplinary nature of the epidemiological domain and support of semantic web technologies. Most of the selected NERO ontologies are current candidates or members of the Open Biological and Biomedical Ontologies initiative.

[1]  Hugo Alexandre Ferreira,et al.  Epidemic Marketplace: An Information Management System for Epidemiological Data , 2010, ITBAM.

[2]  S. Mundlos,et al.  The Human Phenotype Ontology , 2010, Clinical genetics.

[3]  W. Kibbe,et al.  Annotating the human genome with Disease Ontology , 2009, BMC Genomics.

[4]  C E Lipscomb,et al.  Medical Subject Headings (MeSH). , 2000, Bulletin of the Medical Library Association.

[5]  Son Doan,et al.  BioCaster: detecting public health rumors with a Web-based text mining system , 2008, Bioinform..

[6]  Frank van Harmelen,et al.  A reasonable Semantic Web , 2010, Semantic Web.

[7]  Marja-riitta Koivunen,et al.  W3C Semantic Web Activity , 2001 .

[8]  Barry Smith,et al.  Infectious Disease Ontology , 2010 .

[9]  Sherri de Coronado,et al.  NCI Thesaurus: A semantic model integrating cancer-related clinical and molecular information , 2007, J. Biomed. Informatics.

[10]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[11]  Yongqun He,et al.  Protegen: a web-based protective antigen database and analysis system , 2010, Nucleic Acids Res..

[12]  Tim Morris,et al.  A Biosurveillance Platform for BioSense Message Analysis Using Integrated Reference Ontologies and Intelligent Agents , 2007, AAAI Fall Symposium: Regarding the Intelligence in Distributed Intelligent Systems.

[13]  Joshua C Denny,et al.  Mining Biomedical Literature for Terms related to Epidemiologic Exposures. , 2010, AMIA ... Annual Symposium proceedings. AMIA Symposium.

[14]  Miquel Porta,et al.  A Dictionary of Epidemiology , 2008 .

[15]  George Hripcsak,et al.  Comparing Inconsistent Relationship Configurations Indicating UMLS Errors , 2009, AMIA.

[16]  Mário J. Silva,et al.  The Geo-Net-PT/Yahoo! GeoPlanet TM concordance , 2010 .

[17]  Lynn M. Schriml,et al.  GeMInA, Genomic Metadata for Infectious Agents, a geospatial surveillance pathogen database , 2009, Nucleic Acids Res..

[18]  Mário J. Silva,et al.  Geographic Ontologies Production in GREASE-II , 2009 .

[19]  M. Khoury,et al.  The Human Genome Epidemiology Network. , 1998, American journal of epidemiology.

[20]  D. Lindberg,et al.  The Unified Medical Language System , 1993, Methods of Information in Medicine.

[21]  Wendy Hall,et al.  The Semantic Web Revisited , 2006, IEEE Intelligent Systems.

[22]  Christoph Steinbeck,et al.  Chemical Entities of Biological Interest: an update , 2009, Nucleic Acids Res..

[23]  Geoffrey Frank,et al.  An Ontology for Designing Models of Epidemics , 2009 .

[24]  Kent A. Spackman,et al.  SNOMED clinical terms: overview of the development process and project status , 2001, AMIA.

[25]  John D. Osborne,et al.  Annotating the human genome with Disease , 2009 .