Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation

Monocular 3D object detection task aims to predict the 3D bounding boxes of objects based on monocular RGB images. Since the location recovery in 3D space is quite difficult on account of absence of depth information, this paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task. Different from the widely studied 2D bounding boxes, the proposed novel structured polygon in the 2D image consists of several projected surfaces of the target object. Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection. In order to inversely project the predicted 2D structured polygon to a cuboid in the 3D physical world, the following depth recovery task uses the object height prior to complete the inverse projection transformation with the given camera projection matrix. Moreover, a fine-grained 3D box refinement scheme is proposed to further rectify the 3D detection results. Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.

[1]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Huimin Ma,et al.  3D Object Proposals for Accurate Object Class Detection , 2015, NIPS.

[4]  Peter V. Gehler,et al.  3D object class detection in the wild , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[5]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[6]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[7]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Jia Deng,et al.  Stacked Hourglass Networks for Human Pose Estimation , 2016, ECCV.

[9]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Nassir Navab,et al.  SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[11]  Jana Kosecka,et al.  3D Bounding Box Estimation Using Deep Learning and Geometry , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Thierry Chateau,et al.  Deep MANTA: A Coarse-to-Fine Many-Task Network for Joint 2D and 3D Vehicle Analysis from Monocular Image , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  Dacheng Tao,et al.  Deep Ordinal Regression Network for Monocular Depth Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[17]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[18]  Bin Yang,et al.  Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[19]  Sanja Fidler,et al.  3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Bin Xu,et al.  Multi-level Fusion Based 3D Object Detection from Monocular Images , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Yan Lu,et al.  MonoGRNet: A Geometric Reasoning Network for Monocular 3D Object Localization , 2018, AAAI.

[22]  Steven L. Waslander,et al.  Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Adrien Gaidon,et al.  ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Yan Wang,et al.  Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Xiaogang Wang,et al.  GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Shaojie Shen,et al.  Stereo R-CNN Based 3D Object Detection for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).