Hindered diffusion of high molecular weight compounds in brain extracellular microenvironment measured with integrative optical imaging.

[1]  Diffusion properties of the microenvironment of cephalopod brain , 1995 .

[2]  C. Nicholson,et al.  Anisotropic and heterogeneous diffusion in the turtle cerebellum: implications for volume transmission. , 1993, Journal of neurophysiology.

[3]  Charles Nicholson,et al.  Ion-selective microelectrodes and diffusion measurements as tools to explore the brain cell microenvironment , 1993, Journal of Neuroscience Methods.

[4]  A. Lehmenkühler,et al.  Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis , 1993, Neuroscience.

[5]  A. Hansen,et al.  Brain interstitial volume fraction and tortuosity in anoxia. Evaluation of the ion-selective micro-electrode method. , 1992, Acta physiologica Scandinavica.

[6]  P. Basser Interstitial pressure, volume, and flow during infusion into brain tissue. , 1992, Microvascular research.

[7]  J. Weissman,et al.  Volume Transmission in the Brain , 1992, Neurology.

[8]  S. Davis,et al.  Epi‐fluorescence Microscopy and Image Analysis Used to Measure Diffusion Coefficients in Gel Systems , 1992, The Journal of pharmacy and pharmacology.

[9]  Timothy J. Ebner,et al.  Deblurring of 3-dimensional patterns of evoked rat cerebellar cortical activity: a study using voltage-sensitive dyes and optical sectioning , 1992, Journal of Neuroscience Methods.

[10]  C. Nicholson,et al.  Quantitative analysis of extracellular space using the method of TMA+ iontophoresis and the issue of TMA+ uptake. , 1992, Canadian journal of physiology and pharmacology.

[11]  C. Nicholson,et al.  Extracellular volume decreases while cell volume is maintained by ion uptake in rat brain during acute hypernatremia. , 1991, The Journal of physiology.

[12]  Eva Syková,et al.  Extracellular space volume changes in the rat spinal cord produced by nerve stimulation and peripheral injury , 1991, Brain Research.

[13]  C. Nicholson,et al.  Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum. , 1991, Journal of neurophysiology.

[14]  R. Dingledine,et al.  Regional variation of extracellular space in the hippocampus. , 1990, Science.

[15]  D. Agard,et al.  Determination of three-dimensional imaging properties of a light microscope system. Partial confocal behavior in epifluorescence microscopy. , 1990, Biophysical journal.

[16]  R. Jain,et al.  Convection and diffusion measurements using fluorescence recovery after photobleaching and video image analysis: in vitro calibration and assessment. , 1990, Microvascular research.

[17]  R K Jain,et al.  Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[18]  K. Luby‐Phelps Preparation of fluorescently labeled dextrans and ficolls. , 1989, Methods in cell biology.

[19]  K. Diller,et al.  Fluorescence digital microscopy of interstitial macromolecular diffusion in burn injury. , 1989, Computers in biology and medicine.

[20]  R. Rigler,et al.  Diffusion of fluorescein‐labelled molecules in suspensions of erythrocyte ghosts , 1988, FEBS letters.

[21]  J Fenstermacher,et al.  Drug “Diffusion” within the Brain a , 1988, Annals of the New York Academy of Sciences.

[22]  K. Luby‐Phelps Chapter 4 Preparation of Fluorescently Labeled Dextrans and Ficolls , 1988 .

[23]  D. Taylor,et al.  The submicroscopic properties of cytoplasm as a determinant of cellular function. , 1988, Annual review of biophysics and biophysical chemistry.

[24]  D. Taylor,et al.  Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Nicholson,et al.  Calcium diffusion in the brain cell microenvironment. , 1987, Canadian journal of physiology and pharmacology.

[26]  Structure and Localization of Nervous Tissue Proteoglycans a , 1986, Annals of the New York Academy of Sciences.

[27]  C. Nicholson,et al.  The Migration of Substances in the Neuronal Microenvironment a , 1986, Annals of the New York Academy of Sciences.

[28]  D. Taylor,et al.  Probing the structure of cytoplasm , 1986, The Journal of cell biology.

[29]  Charles Nicholson,et al.  Diffusion from an injected volume of a substance in brain tissue with arbitrary volume fraction and tortuosity , 1985, Brain Research.

[30]  F. O. Schmitt,et al.  Molecular regulators of brain function: A new view , 1984, Neuroscience.

[31]  R. Jain,et al.  Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. , 1984, The American journal of physiology.

[32]  R K Jain,et al.  Extravascular diffusion in normal and neoplastic tissues. , 1984, Cancer research.

[33]  D. Agard Optical sectioning microscopy: cellular architecture in three dimensions. , 1984, Annual review of biophysics and bioengineering.

[34]  P. A. Golub,et al.  Properties of the , 1984 .

[35]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[36]  C. Nicholson,et al.  Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. , 1981, The Journal of physiology.

[37]  H. Thoenen,et al.  Physiology of nerve growth factor. , 1980, Physiological reviews.

[38]  H. Wayland,et al.  Interstitial diffusion of macromolecules in the rat mesentery. , 1979, Microvascular research.

[39]  A. R. Gardner-Medwin,et al.  Diffusion from an iontophoretic point source in the brain: role of tortuosity and volume fraction , 1979, Brain Research.

[40]  T. Laurent,et al.  Diffusion of dextran in concentrated solutions. , 1976, European journal of biochemistry.

[41]  C. Patlak,et al.  THE EXCHANGE OF MATERIAL BETWEEN CEREBROSPINAL FLUID AND BRAIN , 1975 .

[42]  H. Wayland,et al.  Macromolecular transport in the cat mesentery. , 1975, Microvascular research.

[43]  S. I. Rubinow,et al.  Introduction to Mathematical Biology , 1975 .

[44]  T. Kehl,et al.  A digital system for studying interstitial transport of dye molecules. , 1973, Microvascular research.

[45]  G. Arturson,et al.  Dextrans as test molecules in studies of the functional ultrastrucutre of biological membranes. Molecular weight distribution analysis by gel chromatography. , 1972, Clinica chimica acta; international journal of clinical chemistry.

[46]  P. Stokseth Properties of a Defocused Optical System , 1969 .

[47]  K. Granath,et al.  Molecular weight distribution analysis by gel chromatography on Sephadex. , 1967, Journal of chromatography.

[48]  A. Cremers,et al.  The Obstruction Effect in the Self-Diffusion Coefficients of Sodium and Cesium in Agar Gels , 1966 .

[49]  M. A. Lauffer,et al.  Diffusion measurements in agar gel. , 1962, Biochemistry.

[50]  G. K. Ackers,et al.  Restricted diffusion of macromolecules through agar-gel membranes. , 1962, Biochimica et biophysica acta.

[51]  K. Granath Solution properties of branched dextrans , 1958 .

[52]  A. Ogston,et al.  Molecular Configuration of Dextrans in Aqueous Solution , 1953, Nature.

[53]  J. Frenkel The Viscosity of Liquids. , 1930, Nature.