Reconstructing shapes with guarantees by unions of convex sets

A simple way to reconstruct a shape <i>A</i> from a sample <i>P</i> is to output an <i>r</i>-offset <i>P</i> + <i>r B</i>, where <i>B</i> = {<i>x</i> ∈ <b>R</b><sup><i>N</i></sup> <i>x</i> ≤ 1} designates the unit Euclidean ball centered at the origin. Recently, it has been proved that the output <i>P</i> + <i>r B</i> is homotopy equivalent to the shape <i>A</i>, for a dense enough sample <i>P</i> of <i>A</i> and for a suitable value of the parameter <i>r</i>. In this paper, we extend this result and find convex sets <i>C</i> ⊂ <b>R</b><sup><i>N</i></sup>, besides the unit Euclidean ball <i>B</i>, for which <i>P</i> + <i>rC</i> reconstructs the topology of <i>A</i>. This class of convex sets includes in particular <i>N</i>-dimensional cubes in <b>R</b><sup><i>N</i></sup>. We proceed in two steps. First, we establish the result when <i>P</i> is an ε-offset of <i>A</i>. Building on this first result, we then consider the case when <i>P</i> is a finite noisy sample of <i>A</i>.

[1]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[2]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2009, Discret. Comput. Geom..

[3]  André Lieutier,et al.  Optimal Reconstruction Might be Hard , 2010, SCG.

[4]  Tamal K. Dey,et al.  Critical points of the distance to an epsilon-sampling of a surface and flow-complex-based surface reconstruction , 2005, Symposium on Computational Geometry.

[5]  D. Koutroufiotis,et al.  On Blaschke's rolling theorems , 1972 .

[6]  L. Schwartz Théorie des distributions , 1966 .

[7]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[8]  Olivier Devillers,et al.  A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron , 2012, Discret. Comput. Geom..

[9]  R. Ho Algebraic Topology , 2022 .

[10]  Hyeong In Choi,et al.  The Medial Axis Transform , 2002, Handbook of Computer Aided Geometric Design.

[11]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[12]  K. Grove Critical point theory for distance functions , 1993 .

[13]  Frédéric Chazal,et al.  Normal cone approximation and offset shape isotopy , 2009, Comput. Geom..

[14]  Frédéric Chazal,et al.  Shape smoothing using double offsets , 2007, Symposium on Solid and Physical Modeling.

[15]  Frédéric Chazal,et al.  Smooth manifold reconstruction from noisy and non-uniform approximation with guarantees , 2008, Comput. Geom..

[16]  Frédéric Chazal,et al.  Stability of Curvature Measures , 2008, Comput. Graph. Forum.

[17]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[18]  David Cohen-Steiner,et al.  Inferring Local Homology from Sampled Stratified Spaces , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[19]  Sunghee Choi,et al.  A Simple Algorithm for Homeomorphic Surface Reconstruction , 2002, Int. J. Comput. Geom. Appl..

[20]  H. Edelsbrunner The union of balls and its dual shape , 1995 .

[21]  Jean-Daniel Boissonnat,et al.  Incremental construction of the delaunay triangulation and the delaunay graph in medium dimension , 2009, SCG '09.

[22]  F. Chazal,et al.  The λ-medial axis , 2005 .

[23]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[24]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[25]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.