Layer-sliding-mediated controllable synthetic strategy for the preparation of multifunctional materials

[1]  Mubashar Ali,et al.  Efficient hydrogen storage in LiMgF3: A first principle study , 2023, International Journal of Hydrogen Energy.

[2]  M. Junaid Iqbal Khan,et al.  Effect of layer sliding on the interfacial electronic properties of intercalated silicene/indium selenide van der Waals heterostructure , 2022, Communications in Theoretical Physics.

[3]  S. Chupradit,et al.  Influence of Different Rotations of Organic Formamidinium Molecule on Electronic and Optical Properties of FAPbBr3 Perovskite , 2021, Coatings.

[4]  Shengxue Yang,et al.  Strain engineering of two‐dimensional materials: Methods, properties, and applications , 2021, InfoMat.

[5]  Muhammad Iqbal Hussain,et al.  First-principles investigations of the structural, optoelectronic, magnetic and thermodynamic properties of hydride perovskites XCuH3 (X = Co, Ni, Zn) for hydrogen storage applications , 2020 .

[6]  Carlo Cavazzoni,et al.  Quantum ESPRESSO toward the exascale. , 2020, The Journal of chemical physics.

[7]  M. Yan,et al.  The first-principles study on the graphene/MoS2 heterojunction , 2020 .

[8]  T. Bijoy,et al.  Lithiation of the Two-Dimensional Silicon Carbide–Graphene van der Waals Heterostructure: A First Principles Study , 2019, The Journal of Physical Chemistry C.

[9]  F. Peeters,et al.  Tunable 2D-gallium arsenide and graphene bandgaps in a graphene/GaAs heterostructure: an ab initio study , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  G. Murtaza,et al.  Layer-sliding-mediated controlled tuning of physical properties of intercalated silicene/hBN heterostructure , 2018, Materials Research Express.

[11]  C. Nguyen,et al.  Structural and electronic properties of a van der Waals heterostructure based on silicene and gallium selenide: effect of strain and electric field. , 2018, Physical chemistry chemical physics : PCCP.

[12]  W. Yue,et al.  Optical Properties of Graphene/MoS2 Heterostructure: First Principles Calculations , 2018, Nanomaterials.

[13]  Lin Wang,et al.  Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy , 2018, Frontiers of Physics.

[14]  Md. Hasibul Alam,et al.  Silicene, silicene derivatives, and their device applications. , 2018, Chemical Society reviews.

[15]  S. Karna,et al.  Robust band gaps in the graphene/oxide heterostructure: SnO/graphene/SnO. , 2018, Physical chemistry chemical physics : PCCP.

[16]  Wei Wu,et al.  Tunable electronic properties of silicene/GaP heterobilayer: Effects of electric field or biaxial tensile strain , 2018 .

[17]  Mingwen Zhao,et al.  Silicene and germanene on InSe substrates: structures and tunable electronic properties. , 2018, Physical chemistry chemical physics : PCCP.

[18]  Xin Cong,et al.  Vibrational Properties of a Monolayer Silicene Sheet Studied by Tip-Enhanced Raman Spectroscopy. , 2017, Physical review letters.

[19]  L. Yin,et al.  Synthesis, properties and applications of 2D layered MIIIXVI (M = Ga, In; X = S, Se, Te) materials. , 2016, Nanoscale.

[20]  Yan Yao,et al.  Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing , 2016 .

[21]  R. Yu,et al.  Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. , 2015, Chemical Society reviews.

[22]  Hui Li,et al.  Silicene: from monolayer to multilayer — A concise review* , 2015 .

[23]  S. Cheong,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[24]  Liangbing Hu,et al.  Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation , 2014, Nature Communications.

[25]  Jiaxin Zheng,et al.  Does the Dirac Cone Exist in Silicene on Metal Substrates? , 2014, Scientific Reports.

[26]  B. Yakobson,et al.  Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. , 2014, Nanoscale.

[27]  R. Sankar,et al.  High performance and bendable few-layered InSe photodetectors with broad spectral response. , 2014, Nano letters.

[28]  Zhi-Xun Shen,et al.  Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. , 2014, Nature nanotechnology.

[29]  Qing Tang,et al.  Graphene-related nanomaterials: tuning properties by functionalization. , 2013, Nanoscale.

[30]  N. Takagi,et al.  Substrate-induced symmetry breaking in silicene. , 2013, Physical review letters.

[31]  L. Meng,et al.  Buckled silicene formation on Ir(111). , 2013, Nano letters.

[32]  R. Ahmed,et al.  An Improved Study of Electronic Band Structure and Optical Parameters of X-Phosphides (X=B, Al, Ga, In) by Modified Becke—Johnson Potential , 2012 .

[33]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[34]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[35]  Cheng-Cheng Liu,et al.  Evidence for Dirac fermions in a honeycomb lattice based on silicon. , 2012, Physical review letters.

[36]  V. Fal’ko,et al.  Electrically tunable band gap in silicene , 2011, 1112.4792.

[37]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[38]  P. Kim,et al.  Observation of the fractional quantum Hall effect in graphene , 2009, Nature.

[39]  Fabian Duerr,et al.  Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene , 2009, Nature.

[40]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[42]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[43]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[44]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[45]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[46]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[47]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[48]  Carlo Cavazzoni,et al.  First-principles codes for computational crystallography in the Quantum-ESPRESSO package , 2005 .

[49]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[50]  P. Magusin,et al.  Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4) , 2004 .

[51]  Bernd G. Pfrommer,et al.  Relaxation of Crystals with the Quasi-Newton Method , 1997 .

[52]  David Jiles,et al.  Introduction to the Electronic Properties of Materials , 1994 .

[53]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. II. Operators for fast iterative diagonalization. , 1991, Physical review. B, Condensed matter.

[54]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[55]  G. Kerker,et al.  Non-singular atomic pseudopotentials for solid state applications , 1980 .

[56]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .