Annealing of swift heavy ion tracks in amorphous silicon dioxide

[1]  C. Trautmann,et al.  Shape of nanopores in track-etched polycarbonate membranes , 2021 .

[2]  Dr. Rohini Motwani Genus , 2020, Encyclopedia of Animal Cognition and Behavior.

[3]  Shi-Li Zhang,et al.  Fundamentals and potentials of solid-state nanopores: a review , 2020, Journal of Physics D: Applied Physics.

[4]  J. Janot,et al.  Track‐Etched Nanopore/Membrane: From Fundamental to Applications , 2020 .

[5]  M. Toimil-Molares,et al.  Analysis of nanometer-sized aligned conical pores using small-angle x-ray scattering , 2020, Physical Review Materials.

[6]  Feng Chen,et al.  Plasmonic Nanoparticles in Dielectrics Synthesized by Ion Beams: Optical Properties and Photonic Applications , 2020, Advanced Optical Materials.

[7]  K. Kececi,et al.  Review—Track-Etched Nanoporous Polymer Membranes as Sensors: A Review , 2020 .

[8]  C. Trautmann,et al.  Fundamental Phenomena and Applications of Swift Heavy Ion Irradiations , 2020, 2001.03711.

[9]  J. McCloy,et al.  Challenges with vitrification of Hanford High-Level Waste (HLW) to borosilicate glass – An overview , 2019 .

[10]  J. Janot,et al.  Single conical track-etched nanopore for a free-label detection of OSCS contaminants in heparin. , 2019, Biosensors & bioelectronics.

[11]  M. Toimil-Molares,et al.  Etched ion tracks in amorphous SiO2 characterized by small angle x-ray scattering: influence of ion energy and etching conditions , 2019, Nanotechnology.

[12]  Qi Chen,et al.  Fabrication and Applications of Solid-State Nanopores , 2019, Sensors.

[13]  K. Kopecskó,et al.  Corrosion of glass used for radioactive waste disposal – state of the art , 2019, Pollack Periodica.

[14]  Burkard M. Zapff Micha , 2018, Isaias - Hieremias - Baruch - Ezechiel - Daniel - XII Prophetae - Maccabeorum.

[15]  Yugang Wang,et al.  Fabrication and application of nanoporous polymer ion-track membranes , 2018, Nanotechnology.

[16]  Z. Siwy,et al.  Biomimetic potassium-selective nanopores , 2018, Science Advances.

[17]  Ki-Bum Kim,et al.  Recent Progress in Solid‐State Nanopores , 2018, Advanced materials.

[18]  C. Trautmann,et al.  Nanoscale density variations induced by high energy heavy ions in amorphous silicon nitride and silicon dioxide , 2018, Nanotechnology.

[19]  S. Gin,et al.  Radionuclides containment in nuclear glasses: an overview , 2017 .

[20]  L. Vlasukova,et al.  Photoluminescence and enhanced chemical reactivity of amorphous SiO 2 films irradiated with high fluencies of 133-MeV Xe ions , 2017 .

[21]  C. Trautmann,et al.  Composition and orientation dependent annealing of ion tracks in apatite - Implications for fission track thermochronology , 2017 .

[22]  I. Monnet,et al.  Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties , 2016 .

[23]  Quoc Hung Nguyen,et al.  Transport properties of track-etched membranes having variable effective pore-lengths , 2015, Nanotechnology.

[24]  C. Trautmann,et al.  Response of Gd2Ti2O7 and La2Ti2O7 to swift-heavy ion irradiation and annealing , 2015 .

[25]  U. Keyser,et al.  Electroosmotic flow rectification in conical nanopores , 2015, Nanotechnology.

[26]  C. Trautmann,et al.  Annealing behaviour of ion tracks in olivine, apatite and britholite , 2014 .

[27]  C. Trautmann,et al.  Temperature dependence of ion track formation in quartz and apatite , 2013 .

[28]  Wenzhen Chen,et al.  A Study of Self-Burial of a Radioactive Waste Container by Deep Rock Melting , 2013 .

[29]  C. Trautmann,et al.  SAXS investigations of the morphology of swift heavy ion tracks in α-quartz , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  M. Wolfram,et al.  Rectification properties of conically shaped nanopores: consequences of miniaturization. , 2012, Physical chemistry chemical physics : PCCP.

[31]  C. Trautmann,et al.  SAXS study of ion tracks in San Carlos olivine and Durango apatite , 2012 .

[32]  R. Ewing,et al.  Thermal annealing of unetched fission tracks in apatite , 2012 .

[33]  A. Nelson Elementary Scattering Theory for X-ray and Neutron Users , 2012 .

[34]  K. Nordlund,et al.  Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2 , 2011 .

[35]  C. Trautmann,et al.  Annealing kinetics of latent particle tracks in Durango apatite , 2011 .

[36]  S. Däbritz,et al.  75 years of Kossel patterns ? past and future , 2010 .

[37]  M. Hunger,et al.  Determination of track etch rates from wall profiles of particle tracks etched in direct and reversed direction in PADC CR-39 SSNTDs , 2009 .

[38]  C. Trautmann,et al.  Fine structure in swift heavy ion tracks in amorphous SiO2. , 2008, Physical review letters.

[39]  P. Apel,et al.  Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties , 2008, Nanotechnology.

[40]  P. Price,et al.  Recent applications of nuclear tracks in solids , 2008 .

[41]  D. Cookson,et al.  Measurement of latent tracks in amorphous SiO2 using small angle X-ray scattering , 2008 .

[42]  D. Fink,et al.  Ion track-based electronic elements , 2008 .

[43]  F. Faupel,et al.  An ion track based approach to nano-and micro-electronics , 2008 .

[44]  M. Toimil-Molares,et al.  Investigation of nanopore evolution in ion track-etched polycarbonate membranes , 2007 .

[45]  C. Trautmann,et al.  Swift heavy ion-induced swelling and damage in yttria-stabilized zirconia , 2007 .

[46]  G. Possnert,et al.  Ion tracks in amorphous SiO2 irradiated with low and high energy heavy ions , 2006 .

[47]  D. Fink,et al.  High energy ion beam irradiation of polymers for electronic applications , 2005 .

[48]  S. Klaumünzer Ion tracks in quartz and vitreous silica , 2004 .

[49]  K. Awazu,et al.  Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses , 2003 .

[50]  E. U. Khan,et al.  Activation energy for the annealing of nuclear tracks in SSNTDs , 2001 .

[51]  P. Apel,et al.  Track etching technique in membrane technology , 2001 .

[52]  M. Rebetez,et al.  Damage morphology of Kr ion tracks in apatite: Dependence on thermal annealing , 2000 .

[53]  D. M. Knotter,et al.  Etching Mechanism of Vitreous Silicon Dioxide in HF-Based Solutions , 2000 .

[54]  R. Ostermeir,et al.  Wet rapid thermal oxidation of silicon with a pyrogenic system , 1998 .

[55]  H. S. Virk,et al.  Etching and annealing kinetics of 238U ion tracks in Makrofol-N plastic , 1998 .

[56]  J. Schulz,et al.  Ion irradiation induced chemical changes of polymers used for optical applications , 1997 .

[57]  Meftah,et al.  Track formation in SiO2 quartz and the thermal-spike mechanism. , 1994, Physical review. B, Condensed matter.

[58]  R. Howe,et al.  A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications , 1993 .

[59]  J. Pollard,et al.  The Gompertz distribution and its applications. , 1992, Genus.

[60]  K. Crowley,et al.  Experimental studies of annealing of etched fission tracks in fluorapatite , 1991 .

[61]  G. Gerbier,et al.  Systematics of annealing of tracks of relativistic nuclei in phosphate glass detectors , 1987 .

[62]  H. S. Virk,et al.  Annealing of fission fragment tracks in inorganic solids , 1985 .

[63]  Reimar Spohr,et al.  Production and use of nuclear tracks: imprinting structure on solids , 1983 .

[64]  H. R. Hart,et al.  Cosmic-Ray Tracks in Plastics: The Apollo Helmet Dosimetry Experiment , 1971, Science.

[65]  P. Price,et al.  Charged Particle Tracks in Glass , 1963 .

[66]  P. B. Price,et al.  Observations of Charged‐Particle Tracks in Solids , 1962 .

[67]  R. S. Barnes,et al.  Examination of fission fragment tracks with an electron microscope , 1959 .

[68]  D. Young,et al.  Etching of Radiation Damage in Lithium Fluoride , 1958, Nature.

[69]  W. Ehrenberg,et al.  Small-Angle X-Ray Scattering , 1952, Nature.

[70]  Ragnar Hellborg,et al.  Ion Beams in Nanoscience and Technology , 2010 .

[71]  D. Fink,et al.  Chemical etching of fission fragment tracks in SiO2 , 1991 .

[72]  H. S. Virk,et al.  Fission track annealing models and the concept of a single activation energy , 1987 .

[73]  Paul F. Green,et al.  Thermal annealing of fission tracks in apatite: 1. A qualitative description , 1986 .

[74]  R. Spohr,et al.  Statistical properties of etched nuclear tracks , 1979 .

[75]  A. Aframian TRACK RETAINING PROPERTIES OF QUARTZ FOR HIGH TEMPERATURE IN-CORE NEUTRON FLUENCE MEASUREMENTS , 1977 .

[76]  Y. Langevin,et al.  THERMAL ANNEALING OF IRON TRACKS IN MUSCOVITE, LABRADORITE AND OLIVINE , 1977 .

[77]  S. Durrani,et al.  Annealing studies of tracks in crystals , 1977 .

[78]  Masao Kakudo,et al.  Small Angle Scattering of X-Rays , 1968 .

[79]  P. B. Price,et al.  SOLID-STATE TRACK DETECTORS: APPLICATIONS TO NUCLEAR SCIENCE AND GEOPHYSICS , 1965 .