Titan's atmosphere from Voyager infrared observations

[1]  F. Robert,et al.  Hydrogen and oxygen isotope compositions in kerogen from the Orgueil meteorite: Clues to a solar origin , 1990 .

[2]  A. Coustenis,et al.  Titan's atmosphere from voyager infrared observations: I. The gas composition of Titan's equatorial region , 1989 .

[3]  E. Lellouch,et al.  Titan's atmosphere and hypothesized ocean: A reanalysis of the Voyager 1 radio-occultation and IRIS 7.7-μm data , 1989 .

[4]  M. S. Matthews,et al.  Planetary Science. (Book Reviews: Origin and Evolution of Planetary and Satellite Atmospheres) , 1989 .

[5]  K. Baines,et al.  D/H for Uranus and Neptune , 1989 .

[6]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[7]  R. Courtin Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere , 1988 .

[8]  G. Tarrago,et al.  Absolute absorption intensities in the triad ν3, ν5, ν6 of 12CH3D at 6–10 μm , 1988 .

[9]  T. Owen,et al.  Monodeuterated methane in the outer solar system. III. Its abundance of Titan , 1988 .

[10]  J. Pinto,et al.  Kinetic isotopic fractionation and the origin of HDO and CH3D in the Solar System. , 1988, Icarus.

[11]  G. Graner,et al.  Simultaneous analysis of mid-infrared and far-infrared propyne laser emissions , 1988 .

[12]  Prasad Varanasi,et al.  Infrared line widths at planetary atmospheric temperatures , 1988 .

[13]  JOHN S. Lewis,et al.  Deuterium fractionation in the presolar nebula: Kinetic limitations on surface catalysis , 1987 .

[14]  William E. Blass,et al.  Self- and foreign-gas broadening of ethane lines determined from diode laser measurements at 12 μm , 1987 .

[15]  V. Chin,et al.  Hydrogen and nitrogen broadening of the lines of C2H2 at 14 μm , 1987 .

[16]  L. Merlivat,et al.  Hydrogen isotope abundances in the solar system. Part I: Unequilibrated chondrites , 1987 .

[17]  S. Atreya,et al.  Stratospheric Haze Production From Methane Photochemistry on Neptune , 1987 .

[18]  F. Robert,et al.  Oxygen and hydrogen isotope relations in water and acid residues of carbonaceous chondrites , 1986 .

[19]  L. Stief,et al.  The reaction H + C4H2: Absolute rate constant measurement and implication for atmospheric modeling of Titan , 1986 .

[20]  Noelle A. Scott,et al.  The GEISA spectroscopic line parameters data bank in 1984 , 1986 .

[21]  T. Owen,et al.  Deuterium in the outer Solar System: evidence for two distinct reservoirs , 1986, Nature.

[22]  J. Lunine,et al.  D to H ratio and the origin and evolution of Titan's atmosphere , 1986, Nature.

[23]  L S Rothman,et al.  Infrared energy levels and intensities of carbon dioxide. Part 3. , 1978, Applied optics.

[24]  J. Lunine,et al.  Origins of satellites , 1986 .

[25]  D. Gautier The composition of the Titan atmosphere , 1985 .

[26]  P. Varanasi,et al.  Nitrogen-broadened lines of ethane at 150 K☆ , 1985 .

[27]  J. Lunine,et al.  Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system , 1985 .

[28]  T. Owen,et al.  Monodeuterated Methane in the Outer Solar System. II. Its Detection on Uranus at 1.6 Microns , 1985 .

[29]  T. Visser,et al.  The harmonic force field and absolute infrared intensities of diacetylene , 1984 .

[30]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[31]  J. Susskind,et al.  The 12 micron band of ethane - High-resolution laboratory analysis with candidate lines for infrared heterodyne searches , 1984 .

[32]  Gale A. Harvey,et al.  Measurements of the HCN ν3 band broadened by N2 , 1984 .

[33]  P. Varanasi,et al.  Propane absorption band intensities and band model parameters from 680 to 1580cm-1 at 296 and 200 K , 1984 .

[34]  W. T. King,et al.  Integrated infrared intensities in cyanogen , 1984 .

[35]  Francisco P. J. Valero,et al.  Thermal infrared lines of methane broadened by nitrogen at low temperatures , 1983 .

[36]  Francisco P. J. Valero,et al.  Infrared absorption by acetylene in the 12-14 μm region at low temperatures , 1983 .

[37]  Francisco P. J. Valero,et al.  A laboratory study of the 8.65 μm fundamental of 12CH3D at temperatures relevant to titan's atmosphere☆ , 1983 .

[38]  Francisco P. J. Valero,et al.  Measurements of nitrogen-broadened line widths of acetylene at low temperatures , 1983 .

[39]  Y. Yung,et al.  CO2 on Titan , 1983 .

[40]  Carl Sagan,et al.  Production and condensation of organic gases in the atmosphere of Titan , 1984 .

[41]  T. Owen The composition and origin of Titan's atmosphere , 1982 .

[42]  A. Chédin,et al.  Improvements in the Line Parameters of Molecules Involved in the Radiative Transfer of the Giant Planets: Line Parameters of CH 4 and NH 3 . , 1982 .

[43]  T. Onaka,et al.  Infrared Intensities of Bending Fundamentals in Gaseous HCCCN and DCCCN , 1982 .

[44]  R. Prinn,et al.  Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae - Implications for satellite composition , 1981 .

[45]  T. Owen,et al.  On the possible detection of CH3D on Titan and Uranus , 1981 .

[46]  R. Samuelson,et al.  Mean molecular weight and hydrogen abundance of Titan's atmosphere , 1981, Nature.

[47]  A. Aikin,et al.  C4H2, HC3N and C2N2 in Titan's atmosphere , 1981, Nature.

[48]  R. Samuelson,et al.  C3H8 and C3H4 in Titan's atmosphere , 1981, Nature.

[49]  Henry B. Hotz,et al.  The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements , 1981 .

[50]  S. Kim,et al.  The abundance of CH3D in the atmosphere of Titan, derived from 8- to 14-μm thermal emission , 1981 .

[51]  G. E. Wood,et al.  Radio science investigations of the saturn system with voyager 1: preliminary results. , 1981, Science.

[52]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.

[53]  T V Johnson,et al.  Encounter with saturn: voyager 1 imaging science results. , 1981, Science.

[54]  J. Geiss,et al.  On the Abundances of Rare Ions in the Solar Wind , 1981 .

[55]  J. Geiss,et al.  Deuterium in the solar system , 1981 .

[56]  W. Hubbard,et al.  Theoretical predictions of deuterium abundances in the Jovian planets , 1980 .

[57]  M. Allen,et al.  Titan: Aerosol photochemistry and variations related to the sunspot cycle , 1980 .

[58]  T. Visser,et al.  The absolute infrared intensities of propyne‐d0 and propyne‐d3 , 1980 .

[59]  R. Hanel,et al.  Infrared spectrometer for Voyager. , 1980, Applied optics.

[60]  U. Fink,et al.  The infrared spectra of Uranus, Neptune, and Titan from 0.8 to 2.5 microns , 1979 .

[61]  W. Planet,et al.  Temperature-dependent intensities and widths of N2-broadened CO2 lines at 15 μm from tunable laser measurements , 1979 .

[62]  F. Gillett Further observations of the 8--13 micron spectrum of Titan , 1975 .

[63]  N. Scott,et al.  A direct method of computation of the transmission function of an inhomogeneous gaseous medium— I: Description of the method , 1974 .

[64]  D. Strobel The photochemistry of hydrocarbons in the atmosphere of Titan , 1974 .

[65]  R. Thomas,et al.  Vibration-rotation bands of methyl acetylene , 1968 .

[66]  W. T. King,et al.  The infrared spectrum of propane , 1965 .

[67]  D. Hornig,et al.  The Measurement of Bond Moments and Derivatives in HCN and DCN from Infrared Intensities , 1952 .