Scorpion venom components as potential candidates for drug development

[1]  P. Perret,et al.  Quantitative evaluation of the cell penetrating properties of an iodinated Tyr-L-maurocalcine analog. , 2014, Biochimica et biophysica acta.

[2]  P. Harrison,et al.  Antimicrobial peptides from scorpion venoms , 2014, Toxicon.

[3]  Chunfu Wu,et al.  Purification, characterization, and bioactivity of a new analgesic-antitumor peptide from Chinese scorpion Buthus martensii Karsch , 2014, Peptides.

[4]  Qiang Zhang,et al.  Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. , 2014, Molecular pharmaceutics.

[5]  C. Sorgi,et al.  TLR2, TLR4 and CD14 Recognize Venom-Associated Molecular Patterns from Tityus serrulatus to Induce Macrophage-Derived Inflammatory Mediators , 2014, PloS one.

[6]  A. Almaaytah,et al.  Scorpion venom peptides with no disulfide bridges: A review , 2014, Peptides.

[7]  M. Seno,et al.  Chlorotoxin-Fc Fusion Inhibits Release of MMP-2 from Pancreatic Cancer Cells , 2014, BioMed research international.

[8]  V. Quintero-Hernández,et al.  Scorpion venom components that affect ion-channels function. , 2013, Toxicon : official journal of the International Society on Toxinology.

[9]  M. Castanho,et al.  From antimicrobial to anticancer peptides. A review , 2013, Front. Microbiol..

[10]  Ran Wei,et al.  Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. , 2013, Biochimie.

[11]  A. Gomes,et al.  Bengalin initiates autophagic cell death through ERK-MAPK pathway following suppression of apoptosis in human leukemic U937 cells. , 2013, Life sciences.

[12]  Lingli Zhou,et al.  Three new antimicrobial peptides from the scorpion Pandinus imperator , 2013, Peptides.

[13]  A. Díaz-García,et al.  In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines , 2013, Journal of venom research.

[14]  A. Rodríguez‐Romero,et al.  Enhanced antimicrobial activity of novel synthetic peptides derived from vejovine and hadrurin. , 2013, Biochimica et biophysica acta.

[15]  L. Pereira de Almeida,et al.  Tumor-targeted Chlorotoxin-coupled Nanoparticles for Nucleic Acid Delivery to Glioblastoma Cells: A Promising System for Glioblastoma Treatment , 2013, Molecular therapy. Nucleic acids.

[16]  Nizar M. Mhaidat,et al.  Mauriporin, a Novel Cationic α-Helical Peptide with Selective Cytotoxic Activity Against Prostate Cancer Cell Lines from the Venom of the Scorpion Androctonus mauritanicus , 2013, International Journal of Peptide Research and Therapeutics.

[17]  M. Ronjat,et al.  Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide , 2013, Pharmaceuticals.

[18]  Yuejun Fu,et al.  Adenovirus-mediated expression of BmK CT suppresses growth and invasion of rat C6 glioma cells , 2013, Biotechnology Letters.

[19]  Yingliang Wu,et al.  Design of histidine-rich peptides with enhanced bioavailability and inhibitory activity against hepatitis C virus , 2013, Biomaterials.

[20]  I. Gould,et al.  New antibiotic agents in the pipeline and how they can help overcome microbial resistance , 2013, Virulence.

[21]  E. Villegas,et al.  Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics , 2012, The Journal of Antibiotics.

[22]  Y. Rosenstein,et al.  Vm24, a Natural Immunosuppressive Peptide, Potently and Selectively Blocks Kv1.3 Potassium Channels of Human T Cells , 2012, Molecular Pharmacology.

[23]  Chao Dai,et al.  Antibacterial Activity and Mechanism of a Scorpion Venom Peptide Derivative In Vitro and In Vivo , 2012, PloS one.

[24]  J. Chippaux Emerging options for the management of scorpion stings , 2012, Drug design, development and therapy.

[25]  A. Almaaytah,et al.  Antimicrobial/cytolytic peptides from the venom of the North African scorpion, Androctonus amoreuxi: Biochemical and functional characterization of natural peptides and a single site-substituted analog , 2012, Peptides.

[26]  R. C. Rodríguez de la Vega,et al.  Structure, function, and chemical synthesis of Vaejovis mexicanus peptide 24: a novel potent blocker of Kv1.3 potassium channels of human T lymphocytes. , 2012, Biochemistry.

[27]  Yuejun Fu,et al.  Chlorotoxin-conjugated nanoparticles as potential glioma-targeted drugs , 2012, Journal of Neuro-Oncology.

[28]  Fang Liu,et al.  Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn2-7 , 2012, PloS one.

[29]  V. Quintero-Hernández,et al.  Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae , 2012, Peptides.

[30]  S. Serrano,et al.  Bradykinin-potentiating peptides: beyond captopril. , 2012, Toxicon : official journal of the International Society on Toxinology.

[31]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[32]  Lei Zhang,et al.  Characterization of BmKbpp, a multifunctional peptide from the Chinese scorpion Mesobuthus martensii Karsch: Gaining insight into a new mechanism for the functional diversification of scorpion venom peptides , 2012, Peptides.

[33]  M. Mrugala,et al.  Outside the Box—Novel Therapeutic Strategies for Glioblastoma , 2012, Cancer journal.

[34]  G. Schneider,et al.  Designing antimicrobial peptides: form follows function , 2011, Nature Reviews Drug Discovery.

[35]  V. Quintero-Hernández,et al.  Scorpion and spider venom peptides: gene cloning and peptide expression. , 2011, Toxicon : official journal of the International Society on Toxinology.

[36]  James M Olson,et al.  In vivo bio-imaging using chlorotoxin-based conjugates. , 2011, Current pharmaceutical design.

[37]  F. R. Nascimento,et al.  Immune cells recruitment and activation by Tityus serrulatus scorpion venom. , 2011, Toxicon : official journal of the International Society on Toxinology.

[38]  Shuang-quan Zhang,et al.  Analgesic‐antitumor peptide inhibits proliferation and migration of SHG‐44 human malignant glioma cells , 2011, Journal of cellular biochemistry.

[39]  Z. Cao,et al.  Ctriporin, a New Anti-Methicillin-Resistant Staphylococcus aureus Peptide from the Venom of the Scorpion Chaerilus tricostatus , 2011, Antimicrobial Agents and Chemotherapy.

[40]  Qiang Zhang,et al.  Chloride channel-mediated brain glioma targeting of chlorotoxin-modified doxorubicine-loaded liposomes. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[41]  C. Sorgi,et al.  Tityus serrulatus venom and toxins Ts1, Ts2 and Ts6 induce macrophage activation and production of immune mediators. , 2011, Toxicon : official journal of the International Society on Toxinology.

[42]  Z. Cao,et al.  Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses , 2011, Peptides.

[43]  Gergely Maróti,et al.  Natural roles of antimicrobial peptides in microbes, plants and animals. , 2011, Research in microbiology.

[44]  M. D. Waard,et al.  Administration de molécules actives dans les cellules : Le potentiel des peptides de pénétration cellulaire , 2011 .

[45]  T. E. Heinen,et al.  Arthropod venoms and cancer. , 2011, Toxicon : official journal of the International Society on Toxinology.

[46]  Angray S. Kang,et al.  Development of Transgenic Fungi That Kill Human Malaria Parasites in Mosquitoes , 2011, Science.

[47]  Z. Cao,et al.  A new natural α-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV , 2011, Peptides.

[48]  So Yeong Lee,et al.  Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. , 2011, European journal of pharmacology.

[49]  R. C. Rodríguez de la Vega,et al.  Mining on scorpion venom biodiversity. , 2010, Toxicon : official journal of the International Society on Toxinology.

[50]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[51]  C. Sevcik,et al.  Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line. , 2010, Toxicon : official journal of the International Society on Toxinology.

[52]  G. Leung,et al.  Invasion of human glioma cells is regulated by multiple chloride channels including ClC-3. , 2010, Anticancer research.

[53]  D. Denning,et al.  Candida tropicalis in human disease , 2010, Critical reviews in microbiology.

[54]  Jinhua Zhao,et al.  Preparation and in vitro evaluation of 131I-BmK CT as a glioma-targeted agent. , 2010, Cancer biotherapy & radiopharmaceuticals.

[55]  Hui Liu,et al.  BmKCT toxin inhibits glioma proliferation and tumor metastasis. , 2010, Cancer letters.

[56]  Shunyi Zhu,et al.  Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. , 2010, Biochimie.

[57]  V. Petricevich Scorpion Venom and the Inflammatory Response , 2010, Mediators of inflammation.

[58]  Yoshiaki Nakagawa,et al.  A Novel Amphipathic Linear Peptide with Both Insect Toxicity and Antimicrobial Activity from the Venom of the Scorpion Isometrus maculatus , 2010, Bioscience, biotechnology, and biochemistry.

[59]  Yibing Huang,et al.  Alpha-helical cationic antimicrobial peptides: relationships of structure and function , 2010, Protein & Cell.

[60]  J. Morschhäuser Regulation of multidrug resistance in pathogenic fungi. , 2010, Fungal genetics and biology : FG & B.

[61]  F. Verdonck,et al.  Parabutoporin, a cationic amphipathic peptide from scorpion venom: much more than an antibiotic. , 2010, Toxicon : official journal of the International Society on Toxinology.

[62]  A. Gomes,et al.  A high molecular weight protein Bengalin from the Indian black scorpion (Heterometrus bengalensis C.L. Koch) venom having antiosteoporosis activity in female albino rats. , 2010, Toxicon : official journal of the International Society on Toxinology.

[63]  A. Saha,et al.  Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. , 2010, Chemico-biological interactions.

[64]  M. Biancalana,et al.  A designer ligand specific for Kv1.3 channels from a scorpion neurotoxin-based library , 2009, Proceedings of the National Academy of Sciences.

[65]  Chao Dai,et al.  Imcroporin, a New Cationic Antimicrobial Peptide from the Venom of the Scorpion Isometrus maculates , 2009, Antimicrobial Agents and Chemotherapy.

[66]  M. Linton,et al.  Quantum dot mediated imaging of atherosclerosis , 2009, Nanotechnology.

[67]  Shunyi Zhu,et al.  Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[68]  M. Ronjat,et al.  Maurocalcine as a Non Toxic Drug Carrier Overcomes Doxorubicin Resistance in the Cancer Cell Line MDA-MB 231 , 2009, Pharmaceutical Research.

[69]  P. Vandenabeele,et al.  Inhibition of spontaneous neutrophil apoptosis by parabutoporin acts independently of NADPH oxidase inhibition but by lipid raft‐dependent stimulation of Akt , 2009, Journal of leukocyte biology.

[70]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[71]  Q. Wang,et al.  Mucroporin, the First Cationic Host Defense Peptide from the Venom of Lychas mucronatus , 2008, Antimicrobial Agents and Chemotherapy.

[72]  P. Gopalakrishnakone,et al.  Isolation and characterization of a hyaluronidase from the venom of Chinese red scorpion Buthus martensi. , 2008, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[73]  J. Chippaux,et al.  Epidemiology of scorpionism: a global appraisal. , 2008, Acta tropica.

[74]  Hui Liu,et al.  Structural Basis of a Potent Peptide Inhibitor Designed for Kv1.3 Channel, a Therapeutic Target of Autoimmune Disease* , 2008, Journal of Biological Chemistry.

[75]  T. Verano-Braga,et al.  Tityus serrulatus Hypotensins: a new family of peptides from scorpion venom. , 2008, Biochemical and biophysical research communications.

[76]  V. Petricevich,et al.  Toxin gamma from Tityus serrulatus scorpion venom plays an essential role in immunomodulation of macrophages. , 2007, Toxicon : official journal of the International Society on Toxinology.

[77]  J. Howl,et al.  The many futures for cell-penetrating peptides: how soon is now? , 2007, Biochemical Society transactions.

[78]  A. Saha,et al.  Indian black scorpion (Heterometrus bengalensis Koch) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. , 2007, Leukemia research.

[79]  Jinghai Zhang,et al.  Analgesic Peptides in Buthus martensii Karsch: A Traditional Chinese Animal Medicine , 2007 .

[80]  L. Bubendorf,et al.  KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer , 2007, Oncogene.

[81]  S. Levy,et al.  Molecular Mechanisms of Antibacterial Multidrug Resistance , 2007, Cell.

[82]  A. Mamelak,et al.  Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601) , 2007, Expert opinion on drug delivery.

[83]  R. Hancock,et al.  Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections , 2007, Cellular and Molecular Life Sciences.

[84]  J. Tytgat,et al.  Voltage-gated sodium channel modulation by scorpion alpha-toxins. , 2007, Toxicon : official journal of the International Society on Toxinology.

[85]  B. Chai,et al.  Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas , 2007, Neuroscience Letters.

[86]  M. Pfaller,et al.  Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem , 2007, Clinical Microbiology Reviews.

[87]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[88]  S. Griffey,et al.  Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases , 2006, Proceedings of the National Academy of Sciences.

[89]  F. Verdonck,et al.  The antimicrobial peptide parabutoporin competes with p47phox as a PKC‐substrate and inhibits NADPH oxidase in human neutrophils , 2006, FEBS letters.

[90]  V. Petricevich Balance Between Pro- and Anti-Inflammatory Cytokines in Mice Treated With Centruroides noxius Scorpion Venom , 2006, Mediators of inflammation.

[91]  M. Gonda,et al.  Phase I single-dose study of intracavitary-administered iodine-131-TM-601 in adults with recurrent high-grade glioma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[92]  R. C. Rodríguez de la Vega,et al.  K+ channel blockers: novel tools to inhibit T cell activation leading to specific immunosuppression. , 2006, Current pharmaceutical design.

[93]  R. C. Rodríguez de la Vega,et al.  Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. , 2005, Toxicon : official journal of the International Society on Toxinology.

[94]  Daniela Trinca Bertazzi,et al.  Activation of the complement system and leukocyte recruitment by Tityus serrulatus scorpion venom. , 2005, International immunopharmacology.

[95]  A. Mamelak,et al.  Imaging glioma extent with 131I-TM-601. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[96]  G. Corzo,et al.  Scorpion Venom Peptides without Disulfide Bridges , 2005, IUBMB life.

[97]  Graeme Morgan,et al.  The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. , 2004, Clinical oncology (Royal College of Radiologists (Great Britain)).

[98]  H. Sontheimer,et al.  Role for calcium‐activated potassium channels (BK) in growth control of human malignant glioma cells , 2004, Journal of neuroscience research.

[99]  Michael Pennington,et al.  K+ channels as targets for specific immunomodulation. , 2004, Trends in pharmacological sciences.

[100]  Shun Zhu,et al.  Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii Karsch , 2004, Peptides.

[101]  T. Kawai,et al.  Selective Blockade of Voltage‐Gated Potassium Channels Reduces Inflammatory Bone Resorption in Experimental Periodontal Disease , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[102]  L. Kuhn-Nentwig Antimicrobial and cytolytic peptides of venomous arthropods , 2003, Cellular and Molecular Life Sciences CMLS.

[103]  F. Verdonck,et al.  Antimicrobial peptides from scorpion venom induce Ca(2+) signaling in HL-60 cells. , 2003, Biochemical and biophysical research communications.

[104]  Harald Sontheimer,et al.  Chlorotoxin Inhibits Glioma Cell Invasion via Matrix Metalloproteinase-2* , 2003, The Journal of Biological Chemistry.

[105]  Chun-Fu Wu,et al.  Expression of an antitumor-analgesic peptide from the venom of Chinese scorpion Buthus martensii karsch in Escherichia coli. , 2003, Protein expression and purification.

[106]  Xian-Chun Zeng,et al.  Identification of BmKAPi, a novel type of scorpion venom peptide with peculiar disulfide bridge pattern from Buthus martensii Karsch. , 2002, Toxicon : official journal of the International Society on Toxinology.

[107]  F. Verdonck,et al.  Cationic peptides from scorpion venom can stimulate and inhibit polymorphonuclear granulocytes. , 2002, Toxicon : official journal of the International Society on Toxinology.

[108]  F. Verdonck,et al.  Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. , 2002, European journal of biochemistry.

[109]  Jan Tytgat,et al.  An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. , 2002, Toxicon : official journal of the International Society on Toxinology.

[110]  H. Sontheimer,et al.  Chlorotoxin, a scorpion‐derived peptide, specifically binds to gliomas and tumors of neuroectodermal origin , 2002, Glia.

[111]  R. Kraft,et al.  BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells , 2002, Neuroreport.

[112]  K. Chandy,et al.  Selective blockade of T lymphocyte K+ channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[113]  R. Norton,et al.  Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. , 2001, The Biochemical journal.

[114]  H. Naoki,et al.  IsCT, a novel cytotoxic linear peptide from scorpion Opisthacanthus madagascariensis. , 2001, Biochemical and biophysical research communications.

[115]  P. Giraud,et al.  Selective Blocking of Voltage-Gated K+ Channels Improves Experimental Autoimmune Encephalomyelitis and Inhibits T Cell Activation1 , 2001, The Journal of Immunology.

[116]  A. Torres-Larios,et al.  Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. , 2000, European journal of biochemistry.

[117]  D. Jiang,et al.  Cloning and characterization of the cDNA sequences of two venom peptides from Chinese scorpion Buthus martensii Karsch (BmK). , 2000, Toxicon : official journal of the International Society on Toxinology.

[118]  J. J. Wu,et al.  The gene cloning and sequencing of Bm-12, a chlorotoxin-like peptide from the scorpion Buthus martensi Karsch. , 2000, Toxicon : official journal of the International Society on Toxinology.

[119]  L. Possani,et al.  Scorpine, an anti‐malaria and anti‐bacterial agent purified from scorpion venom , 2000, FEBS letters.

[120]  M. Aparecida,et al.  Scorpion venom‐induced neutrophilia is inhibited by a PAF receptor antagonist in the rat , 2000, Journal of leukocyte biology.

[121]  P. Allen,et al.  Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca2+ release channel/ryanodine receptors , 2000, FEBS letters.

[122]  K. Kavanagh,et al.  Emergence of Saccharomyces cerevisiae as a human pathogen: Implications for biotechnology , 1999 .

[123]  A. Schwab,et al.  K+ Channel-Dependent Migration of Fibroblasts and Human Melanoma Cells , 1999, Cellular Physiology and Biochemistry.

[124]  R. Gazzinelli,et al.  Serum levels of cytokines in patients envenomed by Tityus serrulatus scorpion sting. , 1999, Toxicon : official journal of the International Society on Toxinology.

[125]  A. Bordey,et al.  Expression of voltage-activated chloride currents in acute slices of human gliomas , 1998, Neuroscience.

[126]  N. Sigal,et al.  Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. , 1997, Journal of immunology.

[127]  H. Sontheimer,et al.  Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. , 1996, The American journal of physiology.

[128]  H. Rochat,et al.  A bradykinin-potentiating peptide (peptide K12) isolated from the venom of Egyptian scorpion Buthus occitanus , 1995, Peptides.

[129]  H. Sontheimer,et al.  Human astrocytoma cells express a unique chloride current. , 1995, Neuroreport.

[130]  H. Sontheimer,et al.  Human astrocytoma cells express a unique chloride current , 1995, Neuroreport.

[131]  S. Wodak,et al.  NMR sequential assignments and solution structure of chlorotoxin, a small scorpion toxin that blocks chloride channels. , 1995, Biochemistry.

[132]  S. Sternberg The emerging fungal threat. , 1994, Science.

[133]  M. Garcia-Calvo,et al.  Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. , 1993, The Journal of biological chemistry.

[134]  E. W. Alves,et al.  Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. , 1993, Toxicon : official journal of the International Society on Toxinology.

[135]  G. Strichartz,et al.  Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. , 1993, The American journal of physiology.

[136]  W. Lederer,et al.  Scorpion toxins targeted against the sarcoplasmic reticulum Ca(2+)-release channel of skeletal and cardiac muscle. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[137]  G. Giménez-Gallego,et al.  Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. , 1990, The Journal of biological chemistry.

[138]  G. Polis,et al.  The Biology of Scorpions , 1990 .

[139]  M. Lazdunski,et al.  Charybdotoxin is a new member of the K+ channel toxin family that includes dendrotoxin I and mast cell degranulating peptide. , 1989, Biochemistry.

[140]  M. Navia,et al.  Purification, sequence, and model structure of charybdotoxin, a potent selective inhibitor of calcium-activated potassium channels. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[141]  K. Chandy,et al.  Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? , 1984, Nature.

[142]  M. Rimsza,et al.  Scorpion envenomation. , 1980, Pediatrics.

[143]  P. Aronowitz,et al.  Invasive Aspergillosis , 2013, Journal of General Internal Medicine.

[144]  C. Mathers,et al.  GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer , 2013 .

[145]  Jie Yu,et al.  Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn 2-7 , 2012 .

[146]  A. Rodríguez‐Romero,et al.  Vejovine, a new antibiotic from the scorpion venom of Vaejovis mexicanus. , 2011, Toxicon : official journal of the International Society on Toxinology.

[147]  M. De Waard,et al.  [Potential of cell penetrating peptides for cell drug delivery]. , 2011, Medecine sciences : M/S.

[148]  S. Mousa,et al.  Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. , 2010, Anticancer research.

[149]  E. Ythier,et al.  Scorpions of the world , 2010 .

[150]  J. D. Burke,et al.  Antiviral strategies: the present and beyond. , 2009, Current molecular pharmacology.

[151]  Burke Jd,et al.  Antiviral strategies: the present and beyond. , 2009 .

[152]  J. Tytgat,et al.  Voltage-gated sodium channel modulation by scorpion alpha-toxins. , 2007, Toxicon : official journal of the International Society on Toxinology.

[153]  F. Tomita,et al.  ISOLATION AND CHARACTERIZATION OF FLAVONOID COMPOUND FROM FERONIA LIMONIA , 2015 .

[154]  S. Grissmer,et al.  K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. , 2005, The Biochemical journal.

[155]  Cao Zhi Functional Analysis of a Gene Encoding a Chlorotoxin-like Peptide Derived from Scorpion Toxin , 2005 .

[156]  E Blanc,et al.  Solution structure of BmKTX, a K+ blocker toxin from the Chinese scorpion Buthus Martensi , 2000, Proteins.

[157]  V. Kosma,et al.  High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer. , 2000, Cancer research.

[158]  K. Ádám,et al.  Scorpion venom. , 1959, Zeitschrift fur Tropenmedizin und Parasitologie.