Phylogenetic placement of retropinnid fishes: data set incongruence can be reduced by using asymmetric character state transformation costs.

We used mitochondrial DNA sequences to determine the phylogenetic placement of southern smelts (Retropinnidae), a group of diadromous fishes endemic to New Zealand and Australia. Our genetic data strongly support a sister group relationship between retropinnids and northern hemisphere smelts (Osmeridae), a relationship that seems consistent with the similar appearance and life history strategies of these two groups. Our analysis indicates that Retropinnidae and Osmeridae together represent the sister group to the southern hemisphere galaxiid fishes (Galaxiidae). However, this finding conflicts with several recent osteological analyses, which supported a sister relationship for Retropinnidae and Galaxiidae, giving a monophyletic southern hemisphere assemblage (Galaxioidea). We review cases of incongruence and discuss factors that might explain significant disagreement between molecular and morphological data matrices. We suggest that repeated evolutionary simplification may have undermined the accuracy of morphological hypotheses of osmeroid relationships. Although equally weighted parsimony analysis of morphological data rejects the molecular hypothesis (Osmeridae + Retropinnidae), implementation of a range of weighting schemes suggests that incongruence is nonsignificant under asymmetric character transformation models. We propose that a simple "equal transformation cost" parsimony analysis may be biologically unrealistic, especially when reductive homoplasy is widespread; as is increasingly being accepted, complex character states are more readily lost than gained. Therefore, we recommend that morphological systematists routinely implement a range of character transformation models to assess the sensitivity of their phylogenetic reconstructions. We discuss the antitropical biogeography of osmeroid fishes in the context of vicariance and transequatorial dispersal.

[1]  C. Burridge Antitropicality of Pacific Fishes: Molecular Insights , 2002, Environmental Biology of Fishes.

[2]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[3]  R. Leslie,et al.  Inter‐ocean dispersal is an important mechanism in the zoogeography of hakes (Pisces: Merluccius spp.) , 2001 .

[4]  B. Payseur,et al.  Failure of the ILD to determine data combinability for slow loris phylogeny. , 2001, Systematic biology.

[5]  J. Waters,et al.  CLADOGENESIS AND LOSS OF THE MARINE LIFE‐HISTORY PHASE IN FRESHWATER GALAXIID FISHES (OSMERIFORMES: GALAXIIDAE) , 2001, Evolution; international journal of organic evolution.

[6]  J. Waters,et al.  CLADOGENESIS AND LOSS OF THE MARINE LIFE-HISTORY PHASE IN FRESHWATER GALAXIID FISHES (OSMERIFORMES: GALAXIIDAE) , 2001 .

[7]  E. Hagelberg,et al.  Molecular and morphological evidence on the phylogeny of the Elephantidae , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[8]  J. Waters,et al.  Molecular phylogenetics and biogeography of galaxiid fishes (Osteichthyes: Galaxiidae): dispersal, vicariance, and the position of Lepidogalaxias salamandroides. , 2000, Systematic biology.

[9]  C. Orme,et al.  Noise and incongruence: interpreting results of the incongruence length difference test. , 2000, Molecular phylogenetics and evolution.

[10]  C. Simon,et al.  Secondary structure and conserved motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene , 2000, Insect molecular biology.

[11]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[12]  R. Gray,et al.  The phylogenetic relationships of the shags and cormorants: can sequence data resolve a disagreement between behavior and morphology? , 2000, Molecular phylogenetics and evolution.

[13]  J. Waters,et al.  Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal? , 2000, Molecular ecology.

[14]  R. Page,et al.  Comparative analysis of secondary structure of insect mitochondrial small subunit ribosomal RNA using maximum weighted matching. , 2000, Nucleic acids research.

[15]  J. Avise CLADISTS IN WONDERLAND1 , 2000 .

[16]  S. Trewick Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand , 2000 .

[17]  P. Arctander,et al.  Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. , 2000, Systematic biology.

[18]  R. Gardner,et al.  Riding the Ice Age El Nino? Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae) inferred from nuclear ribosomal DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  C. Simon,et al.  The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. , 2000, Molecular biology and evolution.

[20]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[21]  J. Harshman,et al.  Data set incongruence and correlated character evolution: an example of functional convergence in the hind-limbs of stifftail diving ducks. , 1999, Systematic biology.

[22]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[23]  J. Alves-Gomes,et al.  Systematic biology of gymnotiform and mormyriform electric fishes: phylogenetic relationships, molecular clocks and rates of evolution in the mitochondrial rRNA genes , 1999, The Journal of experimental biology.

[24]  C. Burridge,et al.  Extreme intraspecific mitochondrial DNA sequence divergence in Galaxias maculatus (Osteichthys: Galaxiidae), one of the world's most widespread freshwater fish. , 1999, Molecular phylogenetics and evolution.

[25]  S. Graham,et al.  Phylogenetic congruence and discordance among one morphological and three molecular data sets from Pontederiaceae. , 1998, Systematic biology.

[26]  M. Donoghue,et al.  Step matrices and the interpretation of homoplasy. , 1998, Systematic biology.

[27]  B. Bowen,et al.  Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation , 1998 .

[28]  V. Barriel,et al.  Rooting with Multiple Outgroups: Consensus Versus Parsimony , 1998, Cladistics : the international journal of the Willi Hennig Society.

[29]  K. E. Omland EXAMINING TWO STANDARD ASSUMPTIONS OF ANCESTRAL RECONSTRUCTIONS: REPEATED LOSS OF DICHROMATISM IN DABBLING DUCKS (ANATINI) , 1997, Evolution; international journal of organic evolution.

[30]  Michael J. Sanderson,et al.  Homoplasy. The Recurrence of Similarity in Evolution. , 1997 .

[31]  S. Trewick Flightlessness and phylogeny amongst endemic rails (Aves:Rallidae) of the New Zealand region. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[32]  D A Morrison,et al.  Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa. , 1997, Molecular biology and evolution.

[33]  S. Poe Data Set Incongruence and the Phylogeny of Crocodilians , 1996 .

[34]  S. McKay,et al.  Phylogeny of Pacific salmon and trout based on growth hormone type-2 and mitochondrial NADH dehydrogenase subunit 3 DNA sequences , 1996 .

[35]  R. Gray,et al.  Hop, step and gape: do the social displays of the Pelecaniformes reflect phylogeny? , 1996, Animal Behaviour.

[36]  S. Trewick Morphology and evolution of two takahe: flightless rails of New Zealand , 1996 .

[37]  B. Emerson,et al.  Phylogenetic relationships of the Prodontria (Coleoptera; Scarabaeidae; subfamily Melolonthinae), derived from sequence variation in the mitochondrial cytochrome oxidase II gene. , 1995, Molecular phylogenetics and evolution.

[38]  R. Gray,et al.  PENGUINS, PETRELS, AND PARSIMONY: DOES CLADISTIC ANALYSIS OF BEHAVIOR REFLECT SEABIRD PHYLOGENY? , 1995, Evolution; international journal of organic evolution.

[39]  W. Li,et al.  Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. , 1995, Molecular biology and evolution.

[40]  M. Pole The New Zealand flora - entirely long-distance dispersal? , 1994 .

[41]  S. Hedges,et al.  Molecules vs. morphology in avian evolution: the case of the "pelecaniform" birds. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Yves Van de Peer,et al.  Database on the structure of large ribosomal subunit RNA , 1994, Nucleic Acids Res..

[43]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[44]  Ziheng Yang Estimating the pattern of nucleotide substitution , 1994, Journal of Molecular Evolution.

[45]  A. Meyer,et al.  GLOBAL SURVEY OF MITOCHONDRIAL DNA SEQUENCES IN THE THREESPINE STICKLEBACK: EVIDENCE FOR RECENT MIGRATIONS , 1994, Evolution; international journal of organic evolution.

[46]  J. Dodson,et al.  A molecular analysis of relationships and biogeography within a species complex of Holarctic fish (genus Osmerus) , 1994, Molecular ecology.

[47]  J. S. Nelson,et al.  Fishes of the World, 3rd Edition , 1994 .

[48]  R. Cooper,et al.  The New Zealand biota: Historical background and new research. , 1993, Trends in ecology & evolution.

[49]  Robert S. R. Williams,et al.  New Paleocene genus and species of smelt (Teleostei: Osmeridae) from freshwater deposits of the Paskapoo Formation, Alberta, Canada, and comments on osmerid phylogeny , 1991 .

[50]  D. Wake Homoplasy: The Result of Natural Selection, or Evidence of Design Limitations? , 1991, The American Naturalist.

[51]  D. P. Begle Relationships of the Osmeroid Fishes and the Use of Reductive Characters in Phylogenetic Analysis , 1991 .

[52]  A. Meyer,et al.  Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. N. White Antitropicality and Vicariance: A Reply to Briggs , 1989 .

[54]  R. McDowall,et al.  Diadromy in Fishes: Migrations between Freshwater and Marine Environments , 1988 .

[55]  B. N. White THE ISTHMIAN LINK, ANTITROPICALITY AND AMERICAN BIOGEOGRAPHY: DISTRIBUTIONAL HISTORY OF THE ATHERINOPSINAE (PISCES: ATHERINIDAE) , 1986 .

[56]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[57]  W. Bemis Paedomorphosis and the evolution of the Dipnoi , 1984, Paleobiology.

[58]  A. R. Templeton,et al.  PHYLOGENETIC INFERENCE FROM RESTRICTION ENDONUCLEASE CLEAVAGE SITE MAPS WITH PARTICULAR REFERENCE TO THE EVOLUTION OF HUMANS AND THE APES , 1983, Evolution; international journal of organic evolution.

[59]  J. Osse Morphology and evolution. , 1983, Acta morphologica Neerlando-Scandinavica.

[60]  Mark Wilson,et al.  Comparative osteology and relationships of the Umbridae (Pisces: Salmoniformes) , 1982 .

[61]  J. Felsenstein Cases in which Parsimony or Compatibility Methods will be Positively Misleading , 1978 .

[62]  D. Rosen Vicariant Patterns and Historical Explanation in Biogeography , 1978 .

[63]  R. Lande EVOLUTIONARY MECHANISMS OF LIMB LOSS IN TETRAPODS , 1978, Evolution; international journal of organic evolution.

[64]  R. McDowall Generalized Tracks and Dispersal in Biogeography , 1978 .

[65]  J. S. Nelson,et al.  Fishes of the world. , 1978 .

[66]  J. Farris Phylogenetic Analysis Under Dollo's Law , 1977 .

[67]  D. Rosen,et al.  CENTERS OF ORIGIN AND RELATED CONCEPTS , 1974 .

[68]  R. McDowall Relationships of Galaxioid Fishes with a Further Discussion of Salmoniform Classification , 1969 .

[69]  S. Weitzman The Origin of the Stomiatoid Fishes with Comments on the Classification of Salmoniform Fishes , 1967 .

[70]  Stanley H. Weitzman,et al.  Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the AMNH ; v. 131, article 4 , 1967 .

[71]  R. Sokal,et al.  A METHOD FOR DEDUCING BRANCHING SEQUENCES IN PHYLOGENY , 1965 .

[72]  Andrew P. Martin,et al.  THE SIMPLE FOOL’S GUIDE TO PCR , 2004 .

[73]  A. Austin,et al.  Increased congruence does not necessarily indicate increased phylogenetic accuracy--the behavior of the incongruence length difference test in mixed-model analyses. , 2002, Systematic biology.

[74]  J. Wiens,et al.  War of the Iguanas: conflicting molecular and morphological phylogenies and long-branch attraction in iguanid lizards. , 2000, Systematic biology.

[75]  H. Spencer,et al.  PHYLOGENY, BIOGEOGRAPHY, AND TAXONOMY OF AUSTRALASIAN TEALS , 2000 .

[76]  Yves Van de Peer,et al.  Database on the structure of large subunit ribosomal RNA , 1999, Nucleic Acids Res..

[77]  M. Pole,et al.  A large galaxiid fossil (Teleostei) from the Miocene of Central Otago, New Zealand , 1997 .

[78]  Y Van de Peer,et al.  Database on the structure of large ribosomal subunit RNA. , 1997, Nucleic acids research.

[79]  D. McShea COMPLEXITY AND HOMOPLASY , 1996 .

[80]  D. Penny,et al.  Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. , 1996, Molecular biology and evolution.

[81]  R. R. Williams Jaw muscles and suspensoria in the Aplochitonidae (Teleostei: Salmoniformes) and their possible phylogenetic significance , 1996 .

[82]  R. Bateman NONFLORAL HOMOPLASY AND EVOLUTIONARY SCENARIOS IN LIVING AND FOSSIL LAND PLANTS , 1996 .

[83]  L. Hufford ONTOGENETIC EVOLUTION, CLADE DIVERSIFICATION, AND HOMOPLASY , 1996 .

[84]  P. Fuerst,et al.  Galaxias maculatus : An explanation of its biogeography , 1996 .

[85]  David M. Williams,et al.  Congruence Between Molecular and Morphological Phylogenies , 1993 .

[86]  R. McDowall New Zealand freshwater fishes: A natural history and guide , 1990 .

[87]  S. Pääbo Amplifying ancient DNA , 1990 .

[88]  Robert S. R. Williams The phylogenetic relationships of the salmoniform fishes based on the suspensorium and its muscles , 1987 .

[89]  Bc Haimson,et al.  A Simple Method for Estimating In Situ Stresses at Great Depths , 1974 .

[90]  S. Gould,et al.  Dollo on Dollo's law: Irreversibility and the status of evolutionary laws , 1970, Journal of the history of biology.

[91]  R. McDowall The status of Nesogalaxias neocaledonicus (Weber and De Beaufort) (Pisces, Galaxiidae) , 1968 .

[92]  Wayne P. Maddison,et al.  Parsimony , Character-State Reconstructions , and Evolutionary Inferences , 2022 .