On stabilizer-free weak Galerkin finite element methods on polytopal meshes

This paper introduces a new weak Galerkin (WG) finite element method for second order elliptic equations on polytopal meshes. This method, called WG-FEM, is designed by using a discrete weak gradient operator applied to discontinuous piecewise polynomials on finite element partitions of arbitrary polytopes with certain shape regularity. The paper explains how the numerical schemes are designed and why they provide reliable numerical approximations for the underlying partial differential equations. In particular, optimal order error estimates are established for the corresponding WG-FEM approximations in both a discrete $H^1$ norm and the standard $L^2$ norm. Numerical results are presented to demonstrate the robustness, reliability, and accuracy of the WG-FEM. All the results are derived for finite element partitions with polytopes. Allowing the use of discontinuous approximating functions on arbitrary polytopal elements is a highly demanded feature for numerical algorithms in scientific computing.

[1]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[2]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[3]  Junping Wang,et al.  Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes , 2013, 1303.0927.

[4]  I. Babuska The Finite Element Method with Penalty , 1973 .

[5]  Junping Wang,et al.  A Systematic Study on Weak Galerkin Finite Element Methods for Second Order Elliptic Problems , 2018, J. Sci. Comput..

[6]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[7]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[8]  J. David Moulton,et al.  Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..

[9]  Rolf Stenberg,et al.  Error analysis of some nite element methods for the Stokes problem , 1990 .

[10]  Lin Mu,et al.  Weak Galerkin methods for second order elliptic interface problems , 2012, J. Comput. Phys..

[11]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.

[12]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[13]  Junping Wang,et al.  An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes , 2013, Comput. Math. Appl..

[14]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[15]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[16]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[17]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  Simon Tavener,et al.  Lowest-Order Weak Galerkin Finite Element Method for Darcy Flow on Convex Polygonal Meshes , 2018, SIAM J. Sci. Comput..

[20]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[21]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[22]  Shangyou Zhang,et al.  A conforming discontinuous Galerkin finite element method: Part II , 2019, ArXiv.

[23]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[24]  Thomas McMillan,et al.  A modified weak Galerkin finite element method , 2014, J. Comput. Appl. Math..

[25]  Lin Mu,et al.  A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations , 2012, 1210.3818.

[26]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[27]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[28]  Lin Mu,et al.  A modified weak Galerkin finite element method for the Stokes equations , 2015, J. Comput. Appl. Math..

[29]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[30]  John A. Trangenstein,et al.  Mixed and Hybrid Finite Elements , 2013 .

[31]  Lin Mu,et al.  Weak Galerkin Finite Element Methods for Second-Order Elliptic Problems on Polytopal Meshes , 2012 .

[32]  Xiu Ye,et al.  A conforming discontinuous Galerkin finite element method , 2019, 1904.03331.

[33]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[34]  Junping Wang,et al.  A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation with Large Wave Numbers , 2011, 1310.6005.

[35]  Susanne C. Brenner,et al.  A Nonoverlapping DD Preconditioner for a Weakly Over-Penalized Symmetric Interior Penalty Method , 2013, Domain Decomposition Methods in Science and Engineering XX.

[36]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[37]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[38]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[39]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[40]  Alexandre Ern,et al.  Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .