Quantum Coding Bounds and a Closed-Form Approximation of the Minimum Distance Versus Quantum Coding Rate

The tradeoff between the quantum coding rate and the associated error correction capability is characterized by the quantum coding bounds. The unique solution for this tradeoff does not exist, but the corresponding lower and the upper bounds can be found in the literature. In this treatise, we survey the existing quantum coding bounds and provide new insights into the classical to quantum duality for the sake of deriving new quantum coding bounds. Moreover, we propose an appealingly simple and invertible analytical approximation, which describes the tradeoff between the quantum coding rate and the minimum distance of quantum stabilizer codes. For example, for a half-rate quantum stabilizer code having a code word length of <inline-formula> <tex-math notation="LaTeX">$n = 128$ </tex-math></inline-formula>, the minimum distance is bounded by <inline-formula> <tex-math notation="LaTeX">$11 < d < 22$ </tex-math></inline-formula>, while our formulation yields a minimum distance of <inline-formula> <tex-math notation="LaTeX">$d = 16$ </tex-math></inline-formula> for the above-mentioned code. Ultimately, our contributions can be used for the characterization of quantum stabilizer codes.

[1]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[2]  Alexei Ashikhmin Remarks on bounds for quantum codes , 1997 .

[3]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[5]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Gilles Zémor,et al.  Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.

[7]  L. Hanzo,et al.  Closed-Form Approximation of Maximum Free Distance for Binary Block Codes , 2009, 2009 IEEE 70th Vehicular Technology Conference Fall.

[8]  Alexei Ashikhmin,et al.  Linear Programming Bounds for Entanglement-Assisted Quantum Error-Correcting Codes by Split Weight Enumerators , 2016, IEEE Transactions on Information Theory.

[9]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[10]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[11]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[13]  Gilles Zémor,et al.  On Cayley Graphs, Surface Codes, and the Limits of Homological Coding for Quantum Error Correction , 2009, IWCC.

[14]  Pradeep Kiran Sarvepalli,et al.  Degenerate quantum codes and the quantum Hamming bound , 2008, 0812.2674.

[15]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[16]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[17]  Lajos Hanzo,et al.  Quantum-Assisted Routing Optimization for Self-Organizing Networks , 2014, IEEE Access.

[18]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[19]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[20]  I. Devetak,et al.  Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.

[21]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[22]  Michael S. Postol A Proposed Quantum Low Density Parity Check Code , 2001, quant-ph/0108131.

[23]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[24]  Jean-Pierre Tillich,et al.  A class of quantum LDPC codes: construction and performances under iterative decoding , 2007, 2007 IEEE International Symposium on Information Theory.

[25]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[26]  Morris Plotkin,et al.  Binary codes with specified minimum distance , 1960, IRE Trans. Inf. Theory.

[27]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[28]  M. Freedman,et al.  Z(2)-Systolic Freedom and Quantum Codes , 2002 .

[29]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[30]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[31]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[32]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[33]  Eric M. Rains Quantum shadow enumerators , 1999, IEEE Trans. Inf. Theory.

[34]  J. Tillich,et al.  Constructions and performance of classes of quantum LDPC codes , 2005, quant-ph/0502086.

[35]  Paul Adrien Maurice Dirac,et al.  A new notation for quantum mechanics , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[37]  Mark M. Wilde,et al.  Dualities and identities for entanglement-assisted quantum codes , 2010, Quantum Information Processing.

[38]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[39]  Chung-Chin Lu,et al.  A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices , 2007, IEEE Transactions on Information Theory.

[40]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[41]  Robert J. McEliece,et al.  New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities , 1977, IEEE Trans. Inf. Theory.

[42]  Jean-Pierre Tillich,et al.  Description of a quantum convolutional code. , 2003, Physical review letters.

[43]  H. F. Chau Quantum Convolutional Error Correcting Codes , 1997 .

[44]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[46]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[47]  R. Cleve,et al.  Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.

[48]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[49]  Soon Xin Ng,et al.  Low-Complexity Soft-Output Quantum-Assisted Multiuser Detection for Direct-Sequence Spreading and Slow Subcarrier-Hopping Aided SDMA-OFDM Systems , 2014, IEEE Access.

[50]  Lajos Hanzo,et al.  Quantum Search Algorithms, Quantum Wireless, and a Low-Complexity Maximum Likelihood Iterative Quantum Multi-User Detector Design , 2013, IEEE Access.

[51]  E. Gilbert A comparison of signalling alphabets , 1952 .

[52]  Lajos Hanzo,et al.  Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence , 2016, Scientific Reports.

[53]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[54]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[55]  Mark M. Wilde,et al.  Entanglement boosts quantum turbo codes , 2011, ISIT.

[56]  Gilles Brassard,et al.  An optimal quantum algorithm to approximate the mean and its application for approximating the median of a set of points over an arbitrary distance , 2011, ArXiv.

[57]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[58]  Ruihu Li,et al.  Linear Plotkin bound for entanglement-assisted quantum codes , 2013 .

[59]  Nicolas Delfosse,et al.  Tradeoffs for reliable quantum information storage in surface codes and color codes , 2013, 2013 IEEE International Symposium on Information Theory.

[60]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[61]  Zunaira Babar,et al.  Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.

[62]  Alain Couvreur,et al.  A construction of quantum LDPC codes from Cayley graphs , 2011, ISIT.

[63]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[64]  Leonid P. Pryadko,et al.  Improved quantum hypergraph-product LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[65]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[66]  M. Mitchell Waldrop,et al.  The chips are down for Moore’s law , 2016, Nature.

[67]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[68]  Richard C. Singleton,et al.  Maximum distance q -nary codes , 1964, IEEE Trans. Inf. Theory.

[69]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[70]  Mark M. Wilde,et al.  Entanglement-Assisted Quantum Convolutional Coding , 2007, ArXiv.

[71]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[72]  S. Litsyn,et al.  Upper bounds on the size of quantum codes , 1997, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[73]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[74]  Andrew M. Steane Quantum Reed-Muller codes , 1999, IEEE Trans. Inf. Theory.

[75]  Ivan B. Djordjevic,et al.  Quantum Information Processing and Quantum Error Correction: An Engineering Approach , 2012 .

[76]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[77]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[78]  Joseph M. Renes,et al.  Quantum polar codes for arbitrary channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[79]  Soon Xin Ng,et al.  Non-Dominated Quantum Iterative Routing Optimization for Wireless Multihop Networks , 2015, IEEE Access.

[80]  Qifu Tyler Sun,et al.  Design of Quantum Stabilizer Codes From Quadratic Residues Sets , 2014, ArXiv.

[81]  Joseph M Renes,et al.  Efficient polar coding of quantum information. , 2011, Physical review letters.

[82]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[83]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[84]  Dominic C. O'Brien,et al.  Wireless Myths, Realities, and Futures: From 3G/4G to Optical and Quantum Wireless , 2012, Proceedings of the IEEE.

[85]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[86]  Daniel Gottesman,et al.  Fault-tolerant quantum computation with constant overhead , 2013, Quantum Inf. Comput..

[87]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.