Fast quantum methods for optimization
暂无分享,去创建一个
Los Alamos National Laboratory | R. Somma | S. Boixo | G. Ortiz | Gerardo Rodríguez Ortíz | Ca | Venice | R. Somma | G. Ortiz | S. Boixo | Indiana University | D. Physics | T. Division | Rolando Somma Google Quantum A.I. Labs | Ca | L. Laboratory
[1] U. Vazirani,et al. How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.
[2] Adiabatic perturbation theory and geometric phases for degenerate systems. , 2010, Physical review letters.
[3] Daniel Nagaj,et al. Quantum speedup by quantum annealing. , 2012, Physical review letters.
[4] Daniel A. Lidar,et al. Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.
[5] M. R. Rao,et al. Combinatorial Optimization , 1992, NATO ASI Series.
[6] R. Car,et al. Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.
[7] Matthias Troyer,et al. Optimised simulated annealing for Ising spin glasses , 2014, Comput. Phys. Commun..
[8] Rosenbaum,et al. Quantum annealing of a disordered magnet , 1999, Science.
[9] S. Montangero,et al. Quantum Information and Many Body Quantum Systems , 2008 .
[10] Bikas K. Chakrabarti,et al. Quantum Annealing and Other Optimization Methods , 2005 .
[11] J. Doll,et al. Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.
[12] A. K. Chandra,et al. Quantum quenching, annealing and computation , 2010 .
[13] E. Knill,et al. Quantum simulations of classical annealing processes. , 2008, Physical review letters.
[14] R. Somma,et al. Quantum approach to classical statistical mechanics. , 2006, Physical review letters.
[15] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[16] G. Rigolin,et al. Beyond the Quantum Adiabatic Approximation: Adiabatic Perturbation Theory , 2008, 0807.1363.
[17] From quantum mechanics to classical statistical physics: Generalized Rokhsar–Kivelson Hamiltonians and the “Stochastic Matrix Form” decomposition , 2005, cond-mat/0502068.
[18] E. Tosatti,et al. Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .
[19] Stephen P. Jordan,et al. Quantum computation beyond the circuit model , 2008, 0809.2307.
[20] M. Ruskai,et al. Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.
[21] Cedric Yen-Yu Lin,et al. Different Strategies for Optimization Using the Quantum Adiabatic Algorithm , 2014, 1401.7320.
[22] Sergio Boixo,et al. Eigenpath traversal by phase randomization , 2009, Quantum Inf. Comput..
[23] A. Messiah. Quantum Mechanics , 1961 .
[24] Hidetoshi Nishimori,et al. Convergence theorems for quantum annealing , 2006, quant-ph/0608154.
[25] V. Cerný. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .
[26] J. G. Muga,et al. Shortcuts to Adiabaticity , 2012, 1212.6343.
[27] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[28] Gustavo Rigolin,et al. Adiabatic theorem for quantum systems with spectral degeneracy , 2012 .
[29] H. Nishimori,et al. Mathematical foundation of quantum annealing , 2008, 0806.1859.
[30] Hao-Tien Chiang,et al. Improved bounds for eigenpath traversal , 2014 .
[31] B. Chakrabarti,et al. Quantum Annealing and Related Optimization Methods , 2008 .
[32] H. Nishimori,et al. Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.
[33] F. Verstraete,et al. Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.
[34] Christopher L. Henley. From classical to quantum dynamics at Rokhsar–Kivelson points , 2003 .
[35] G. Rigolin,et al. Degenerate Adiabatic Perturbation Theory: Foundations and Applications , 2014, 1403.6132.
[36] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[37] Gerard T. Barkema,et al. Monte Carlo Methods in Statistical Physics , 1999 .
[38] William J. Cook,et al. Combinatorial Optimization: Cook/Combinatorial , 1997 .
[39] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[40] B. M. Fulk. MATH , 1992 .
[41] Daniel A. Lidar,et al. Defining and detecting quantum speedup , 2014, Science.
[42] E. Knill,et al. Fast quantum algorithms for traversing paths of eigenstates , 2010, 1005.3034.
[43] Sergio Boixo,et al. Spectral Gap Amplification , 2011, SIAM J. Comput..
[44] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.