Fast quantum methods for optimization

Discrete combinatorial optimization consists in finding the optimal configuration that minimizes a given discrete objective function. An interpretation of such a function as the energy of a classical system allows us to reduce the optimization problem into the preparation of a low-temperature thermal state of the system. Motivated by the quantum annealing method, we present three strategies to prepare the low-temperature state that exploit quantum mechanics in remarkable ways. We focus on implementations without uncontrolled errors induced by the environment. This allows us to rigorously prove a quantum advantage. The first strategy uses a classical-to-quantum mapping, where the equilibrium properties of a classical system in d spatial dimensions can be determined from the ground state properties of a quantum system also in d spatial dimensions. We show how such a ground state can be prepared by means of quantum annealing, including quantum adiabatic evolutions. This mapping also allows us to unveil some fundamental relations between simulated and quantum annealing. The second strategy builds upon the first one and introduces a technique called spectral gap amplification to reduce the time required to prepare the same quantum state adiabatically. If implemented on a quantum device that exploits quantum coherence, this strategy leads to a quadratic improvement in complexity over the well-known bound of the classical simulated annealing method. The third strategy is not purely adiabatic; instead, it exploits diabatic processes between the low-energy states of the corresponding quantum system. For some problems it results in an exponential speedup (in the oracle model) over the best classical algorithms.

[1]  U. Vazirani,et al.  How "Quantum" is the D-Wave Machine? , 2014, 1401.7087.

[2]  Adiabatic perturbation theory and geometric phases for degenerate systems. , 2010, Physical review letters.

[3]  Daniel Nagaj,et al.  Quantum speedup by quantum annealing. , 2012, Physical review letters.

[4]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[5]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[6]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[7]  Matthias Troyer,et al.  Optimised simulated annealing for Ising spin glasses , 2014, Comput. Phys. Commun..

[8]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[9]  S. Montangero,et al.  Quantum Information and Many Body Quantum Systems , 2008 .

[10]  Bikas K. Chakrabarti,et al.  Quantum Annealing and Other Optimization Methods , 2005 .

[11]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[12]  A. K. Chandra,et al.  Quantum quenching, annealing and computation , 2010 .

[13]  E. Knill,et al.  Quantum simulations of classical annealing processes. , 2008, Physical review letters.

[14]  R. Somma,et al.  Quantum approach to classical statistical mechanics. , 2006, Physical review letters.

[15]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[16]  G. Rigolin,et al.  Beyond the Quantum Adiabatic Approximation: Adiabatic Perturbation Theory , 2008, 0807.1363.

[17]  From quantum mechanics to classical statistical physics: Generalized Rokhsar–Kivelson Hamiltonians and the “Stochastic Matrix Form” decomposition , 2005, cond-mat/0502068.

[18]  E. Tosatti,et al.  Optimization using quantum mechanics: quantum annealing through adiabatic evolution , 2006 .

[19]  Stephen P. Jordan,et al.  Quantum computation beyond the circuit model , 2008, 0809.2307.

[20]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[21]  Cedric Yen-Yu Lin,et al.  Different Strategies for Optimization Using the Quantum Adiabatic Algorithm , 2014, 1401.7320.

[22]  Sergio Boixo,et al.  Eigenpath traversal by phase randomization , 2009, Quantum Inf. Comput..

[23]  A. Messiah Quantum Mechanics , 1961 .

[24]  Hidetoshi Nishimori,et al.  Convergence theorems for quantum annealing , 2006, quant-ph/0608154.

[25]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[26]  J. G. Muga,et al.  Shortcuts to Adiabaticity , 2012, 1212.6343.

[27]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[28]  Gustavo Rigolin,et al.  Adiabatic theorem for quantum systems with spectral degeneracy , 2012 .

[29]  H. Nishimori,et al.  Mathematical foundation of quantum annealing , 2008, 0806.1859.

[30]  Hao-Tien Chiang,et al.  Improved bounds for eigenpath traversal , 2014 .

[31]  B. Chakrabarti,et al.  Quantum Annealing and Related Optimization Methods , 2008 .

[32]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[33]  F. Verstraete,et al.  Criticality, the area law, and the computational power of projected entangled pair states. , 2006, Physical review letters.

[34]  Christopher L. Henley From classical to quantum dynamics at Rokhsar–Kivelson points , 2003 .

[35]  G. Rigolin,et al.  Degenerate Adiabatic Perturbation Theory: Foundations and Applications , 2014, 1403.6132.

[36]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[37]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[38]  William J. Cook,et al.  Combinatorial Optimization: Cook/Combinatorial , 1997 .

[39]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[40]  B. M. Fulk MATH , 1992 .

[41]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[42]  E. Knill,et al.  Fast quantum algorithms for traversing paths of eigenstates , 2010, 1005.3034.

[43]  Sergio Boixo,et al.  Spectral Gap Amplification , 2011, SIAM J. Comput..

[44]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.