Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO

We have performed a detailed population synthesis on a large number (2 x 10 7 ) of binary systems in order to investigate the properties of massive double degenerate binaries. We have included new important results in ourinput physics in order to obtain more reliable estimates of the merging time-scales and relative formation rates. These improvements include refined treatment of the binding energy in a common envelope, helium star evolution and reduced kicks imparted to new-born black holes. The discovery and observations of gamma-ray burst afterglows and the identification of host galaxies have allowed comparisons of theoretical distributions of merger sites with the observed distribution of afterglow positions relative to host galaxies. To help investigate the physical nature of short- and long-duration gamma-ray bursts, we compute the distances of merging neutron stars (NS) and/or black holes (BH) from the centres of their host galaxies, as predicted by their formation scenario combined with motion in galactic potentials. Furthermore, we estimate the formation rate and merging rate of these massive double degenerate binaries. The latter is very important for the prospects of detecting gravitational waves with LIGO/VIRGO. We find that the expected detection rate for LIGO II is ∼850 yr - 1 for galactic field sources and that this rate is completely dominated by merging double black hole (BHBH) binaries. Even LIGO I may detect such an event (∼0.25 yr - 1 ). Our preferred model estimates the Galactic field double neutron star (NSNS) merger rate to be ∼1.5 × 10 - 6 yr - 1 . For BHBH systems this model predicts a merger rate of ∼9.7 x 10 - 6 yr - 1 . Our studies also reveal an accumulating numerous population of very wide-orbit BHBH systems which never merge (τ >> τ H u b b l e ).

[1]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[2]  I. Rodrigues,et al.  The runaway black hole GRO J1655-40 ⋆ , 2002, astro-ph/0211445.

[3]  P. Maxted,et al.  The origin of subdwarf B stars – I. The formation channels , 2002, astro-ph/0206130.

[4]  Tomasz Bulik,et al.  Merger Sites of Double Neutron Stars and Their Host Galaxies , 2002, astro-ph/0204416.

[5]  S. Sigurdsson,et al.  Nova Scorpii and Coalescing Low-Mass Black Hole Binaries as LIGO Sources , 2002, astro-ph/0202385.

[6]  R. Perna,et al.  Short Gamma-Ray Bursts and Mergers of Compact Objects: Observational Constraints , 2002, astro-ph/0201262.

[7]  O. Pols,et al.  The evolution of naked helium stars with a neutron star companion in close binary systems , 2002, astro-ph/0201239.

[8]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[9]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[10]  R.A.M.J. Wijers,et al.  Discovery of a Black Hole Mass-Period Correlation in Soft X-Ray Transients and Its Implication for Gamma-Ray Burst and Hypernova Mechanisms , 2001, astro-ph/0109538.

[11]  S. Rappaport,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 21/08/00 A COMPREHENSIVE STUDY OF NEUTRON STAR RETENTION IN GLOBULAR CLUSTERS , 2001 .

[12]  S. Djorgovski,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[13]  R. Narayan,et al.  Observational Prospects for Afterglows of Short-Duration Gamma-Ray Bursts , 2001, astro-ph/0108132.

[14]  G. Nelemans,et al.  The formation of black hole low-mass X-ray binaries: through case B or case C mass transfer? , 2001, astro-ph/0107410.

[15]  T. Tauris,et al.  Research Note On the binding energy parameter of common envelope evolution - Dependency on the definition of the stellar core boundary during spiral-in , 2001, astro-ph/0101530.

[16]  R. Narayan,et al.  The Coalescence Rate of Double Neutron Star Systems , 2000, astro-ph/0012038.

[17]  A. R. King,et al.  Evolution of Binary and Multiple Star Systems; A Meeting in Celebration of Peter Eggleton's 60th Birthday , 2001 .

[18]  D. Frail,et al.  Observation of X-ray lines from a gamma-ray burst (GRB991216): evidence of moving ejecta from the progenitor. , 2000, Science.

[19]  E. Corsini,et al.  Galaxy Disks and Disk Galaxies , 2000 .

[20]  J. Cordes,et al.  Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins , 2000, astro-ph/0007272.

[21]  T. Tauris,et al.  Formation of Millisecond Pulsars with Heavy White Dwarf Companions: Extreme Mass Transfer on Subthermal Timescales , 2000, The Astrophysical journal.

[22]  F. Camilo,et al.  The Parkes Multibeam Pulsar Survey: PSR J1811-1736, a Pulsar in a Highly Eccentric Binary System , 1999, astro-ph/9911313.

[23]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[24]  H. Lee,et al.  The Blandford-Znajek process as a central engine for a gamma-ray burst , 1999, astro-ph/9906213.

[25]  M. Livio,et al.  Black Hole Formation via Hypercritical Accretion during Common-Envelope Evolution , 1999, astro-ph/9906028.

[26]  Ronald E. Taam,et al.  Common Envelope Evolution of Massive Binary Stars , 2000 .

[27]  S. Djorgovski,et al.  The unusual afterglow of the γ-ray burst of 26 March 1998 as evidence for a supernova connection , 1999, Nature.

[28]  R. Glinski,et al.  Physical chemical control of molecular line profiles of CH+, CH and CN in single homogeneous parcels of interstellar clouds , 1999 .

[29]  C. Otani,et al.  What did ASCA see in the GRB 970828 afterglow , 1999 .

[30]  Chris L. Fryer,et al.  Core-Collapse Simulations of Rotating Stars , 1999, astro-ph/9907433.

[31]  T. Piran Gamma-ray bursts – a puzzle being resolved ☆ , 1999, astro-ph/9907392.

[32]  E. Rol,et al.  Evidence for a Supernova in Reanalyzed Optical and Near-Infrared Images of GRB 970228 , 1999, astro-ph/9907264.

[33]  L. Stella,et al.  On the anomalous X-ray afterglows of GRB 970508 and 970828 , 1999, astro-ph/9906288.

[34]  D. Reichart GRB 970228 Revisited: Evidence for a Supernova in the Light Curve and Late Spectral Energy Distribution of the Afterglow , 1999, astro-ph/9906079.

[35]  S. Djorgovski,et al.  The unusual afterglow of GRB 980326: evidence for the gamma-ray burst/supernova connection , 1999, astro-ph/9905301.

[36]  Chris L. Fryer,et al.  To be submitted to The Astrophysical Journal Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts , 1999 .

[37]  S. Djorgovski,et al.  The afterglow, redshift and extreme energetics of the γ-ray burst of 23 January 1999 , 1999, Nature.

[38]  M. Feroci,et al.  The X-Ray Afterglow of the Gamma-Ray Burst of 1997 May 8:Spectral Variability and Possible Evidence of an Iron Line , 1999, astro-ph/9902013.

[39]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[40]  Cambridge,et al.  Energetics and beaming of gamma ray burst triggers , 1998, astro-ph/9808106.

[41]  H. Bethe,et al.  The formation of high-mass black holes in low-mass X-ray binaries , 1998, astro-ph/9807221.

[42]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[43]  Chris L. Fryer,et al.  Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts , 1998, astro-ph/9808094.

[44]  C. Tout,et al.  Stellar evolution models for Z = 0.0001 to 0.03 (Pols+ 1998) , 1998 .

[45]  M. Livio,et al.  The Fading Optical Counterpart of GRB 970228, 6 Months and 1 Year Later , 1998, astro-ph/9807295.

[46]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[47]  Chris L. Fryer,et al.  Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model , 1998, astro-ph/9804167.

[48]  J. Bloom,et al.  The Spatial Distribution of Coalescing Neutron Star Binaries , 1998, astro-ph/9805222.

[49]  J. Cordes,et al.  Neutron Star Population Dynamics. II. Three-dimensional Space Velocities of Young Pulsars , 1997, astro-ph/9707308.

[50]  S. Djorgovski,et al.  Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.

[51]  M. Livio,et al.  The optical counterpart to γ-ray burst GRB970228 observed using the Hubble Space Telescope , 1997, Nature.

[52]  V. Petrosian,et al.  Time Dilation of BATSE Gamma-Ray Bursts , 1996, astro-ph/9607127.

[53]  TIME DILATION OF BATSE GAMMA-RAY BURSTS , 1997 .

[54]  V. Kalogera Formation of Low-Mass X-Ray Binaries. III. A New Formation Mechanism: Direct Supernova , 1996, astro-ph/9608058.

[55]  D. Nice,et al.  PSR J1518+4904: A Mildly Relativistic Binary Pulsar System , 1996, astro-ph/9605122.

[56]  W. Kluźniak Gamma-Ray Bursts , 1996 .

[57]  C. Flynn,et al.  Kinematics of the outer stellar halo , 1996, astro-ph/9603106.

[58]  R. Chevalier Neutrino-cooled Accretion: Rotation and Stellar Equation of State , 1996 .

[59]  Finn,et al.  Binary inspiral, gravitational radiation, and cosmology. , 1996, Physical review. D, Particles and fields.

[60]  S. Woosley,et al.  The Presupernova Evolution and Explosion of Helium Stars That Experience Mass Loss , 1995 .

[61]  C. Tout,et al.  Approximate input physics for stellar modelling , 1995, astro-ph/9504025.

[62]  P. Podsiadlowski,et al.  The formation of bipolar planetary nebulae and close white dwarf binaries , 1995 .

[63]  G. Brown Neutron star accretion and binary pulsar formation , 1995 .

[64]  P. Podsiadlowski,et al.  A possible criterion for envelope ejection in asymptotic giant branch or first giant branch stars , 1994 .

[65]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[66]  R. Chevalier Neutron Star Accretion in a Stellar Envelope , 1993 .

[67]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[68]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[69]  M. Rees,et al.  Tidal Heating and Mass Loss in Neutron Star Binaries: Implications for Gamma-Ray Burst Models , 1992 .

[70]  M. Kool Common Envelope Evolution and Double Cores of Planetary Nebulae , 1990 .

[71]  Bohdan Paczynski,et al.  A test of the galactic origin of gamma-ray bursts , 1990 .

[72]  M. Livio,et al.  Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars , 1989, Nature.

[73]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[74]  E. Liang New synchrotron luminosity distance limit for the 1979 march 5 gamma-ray event , 1986 .

[75]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[76]  Yu. A. Gur'yan,et al.  Catalog of cosmic gamma-ray bursts from the KONUS experiment data , 1981 .

[77]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[78]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[79]  G. Kuiper PROBLEMS OF DOUBLE-STAR ASTRONOMY. I , 1935 .