Relativistic mean field theory for finite nuclei

Abstract Relativistic mean field theory is used to describe the ground state properties of characteristic nuclei over the entire range of the periodic table, from the light doubly magic nucleus, 16O, to medium heavy spherical superfluid nuclei and, furthermore, to heavy deformed nuclei in the rare earth and actinide regions up to superheavy nuclei. A method is presented which allows a simple, selfconsistent solution of the Dirac equation for the deformed spinor fields of the nucleons and of the Klein-Gordon equation for the deformed scalar and vector fields of the mesons. Pairing correlations are taken into account in the constant gap approximation. The gap parameters are obtained from the experimental odd-even mass differences. The calculations are carried out for a number of parameter sets of meson masses and coupling constants which have been used in the literature. The set which provides the best fit to the ground-state properties of nuclear matter and to spherical doubly magic nuclei is also seen to give an excellent description of light and heavy deformed nuclei.

[1]  H. Stoecker,et al.  Phase transition of the nucleon-antinucleon plasma in a relativistic mean-field theory , 1983 .

[2]  A. Bodmer,et al.  Relativistic Calculation of Nuclear Matter and the Nuclear Surface , 1977 .

[3]  A. H. Wapstra,et al.  The 1977 atomic mass evaluation: in four parts , 1977 .

[4]  C. Horowitz,et al.  Self-consistent hartree description of finite nuclei in a relativistic quantum field theory , 1981 .

[5]  M. Lacombe,et al.  Parametrization of the Paris N-N potential , 1980 .

[6]  F. Serr Thomas-Fermi theories of structure. 1: A collective core - valence electron model of real atoms. 2: A relativistic quantum field theory of finite nuclei , 1978 .

[7]  W. T. Milner,et al.  Transition probability, B(E2)up-arrow, from the ground to the first-excited 2/sup +/ state of even-even nuclides , 1987 .

[8]  P. Reinhard REVIEW ARTICLE: The relativistic mean-field description of nuclei and nuclear dynamics , 1989 .

[9]  I. Sick,et al.  Elastic electron-zirconium scattering , 1971 .

[10]  P. Quentin,et al.  Self-consistent description of heavy nuclei. I. Static properties of some even nuclei , 1982 .

[11]  Toshio Suzuki,et al.  Nuclear magnetic moments and the spin-orbit current in the relativistic mean field theory , 1988 .

[12]  D. Wasson Effect of vacuum polarization on nuclear structure , 1988 .

[13]  B. D. Serot Elastic electron-nucleus scattering in a relativistic theory of nuclear structure☆ , 1981 .

[14]  R. Mercer,et al.  Dirac-equation impulse approximation for intermediate-energy nucleon-nucleus scattering , 1983 .

[15]  J. Walecka A theory of highly condensed matter , 1974 .

[16]  B. Banerjee PION CONDENSATION IN A RELATIVISTIC FIELD THEORY CONSISTENT WITH BULK PROPERTIES OF NUCLEAR MATTER - eScholarship , 1981 .

[17]  J. Walecka,et al.  The Relativistic Nuclear Many Body Problem , 1984 .

[18]  R. Perry Effects of the Dirac sea on finite nuclei , 1986 .

[19]  Peter Edward Hodgson,et al.  Neutron densities and the single particle structure of several even-even nuclei from Ca40 to Pb208 , 1979 .

[20]  S. Marcos,et al.  Single-particle magnetic moments in a relativistic shell model , 1984 .

[21]  R. Mercer,et al.  Prediction of the spin-rotation function Q(θ) using a dirac equation based optical model☆ , 1983 .

[22]  B. Frois,et al.  High-momentum-transfer electron scattering from /sup 208/Pb. [q = 3. 7 fm/sup -1/] , 1977 .

[23]  R. Mercer,et al.  Dirac optical model analysis of p-/sup 40/Ca elastic scattering at 180 MeVand the wine-bottle-bottom shape , 1981 .

[24]  Bouyssy,et al.  Relativistic description of nuclear systems in the Hartree-Fock approximation. , 1987, Physical review. C, Nuclear physics.

[25]  S. Marcos,et al.  Systematics of nuclear matter and finite nuclei properties in a non-linear relativistic mean field approach , 1984 .

[26]  Toshio Suzuki,et al.  Relativistic Hartree response function for quasielastic electron scattering on 12C and 40Ca , 1986 .

[27]  Price,et al.  Systematics of light deformed nuclei in relativistic mean-field models. , 1987, Physical review. C, Nuclear physics.

[28]  Y. K. Gambhir,et al.  Relativistic description of deformed rare earth nuclei , 1988 .

[29]  J. Walecka,et al.  An equation of state for nuclear and higher-density matter based on relativistic mean-field theory , 1974 .

[30]  Oka,et al.  Resolution of the magnetic moment problem in relativistic theories. , 1986, Physical review. C, Nuclear physics.

[31]  P. Blunden,et al.  Relativistic Hartree-Fock calculations for finite nuclei , 1987 .

[32]  A. S. Umar,et al.  Erratum: Relativistic Hartree calculations for axially deformed nuclei [Phys. Rev. Lett. 57, 2916 (1986)] , 1987 .

[33]  K. Holinde Two Nucleon Forces and Nuclear Matter , 1981 .

[34]  U. Hofmann,et al.  A new method to calculate magnetic moments in relativistic mean field theories , 1988 .

[35]  Greiner,et al.  Relativistic Hartree calculations for axially deformed nuclei. , 1986, Physical Review Letters.

[36]  R. Furnstahl Particle-hole excitations in 16O in a relativistic field theory of nuclei☆ , 1985 .

[37]  H. Duerr Relativistic Effects in Nuclear Forces , 1956 .

[38]  M. Brack,et al.  Disappearance of shell effects at high excitation. Self-consistent calculations at finite temperatures , 1974 .

[39]  Toshio Suzuki,et al.  The Coulomb sum for electron scattering in the relativistic random phase approximation , 1986 .

[40]  P. Ring,et al.  Has the nucleus 24Mg a triaxial shape? a relativistic investigation , 1988 .

[41]  Reinhard,et al.  Dissipation and forces in time-dependent Hartree-Fock calculations. , 1988, Physical review. C, Nuclear physics.

[42]  D. Brink,et al.  Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei , 1972 .

[43]  J. Mccarthy,et al.  Elastic electron scattering from c-12 and o-16 , 1970 .

[44]  E. Teller,et al.  CLASSICAL FIELD THEORY OF NUCLEAR FORCES , 1955 .

[45]  L. Ray,et al.  Impulse approximation NN amplitudes for proton-nucleus interactions , 1983 .

[46]  Beck,et al.  Relativistic random-phase approximation longitudinal response function for quasielastic electron scattering. , 1988, Physical review. C, Nuclear physics.

[47]  E. Teller,et al.  Interaction of Antiprotons with Nuclear Fields , 1956 .

[48]  S. Chin A relativistic many-body theory of high density matter. , 1977 .

[49]  A. Arima,et al.  Isoscalar currents and nuclear magnetic moments , 1987 .

[50]  J. Dechargé,et al.  Hartree-Fock-Bogolyubov calculations with the D 1 effective interaction on spherical nuclei , 1980 .

[51]  Horowitz.,et al.  Quasielastic electron scattering and vacuum polarization. , 1989, Physical review letters.

[52]  Suzuki Toshio,et al.  Quasielastic electron scattering in the relativistic σω model , 1985 .

[53]  C. Horowitz,et al.  Relativistic Hartree theory of finite nuclei: The role of the quantum vacuum , 1984 .

[54]  G. Walker,et al.  The electric dipole sum rule in a relativistic self-consistent theory of finite nuclei , 1985 .

[55]  D. Vautherin,et al.  Self-consistent calculation of the ground state properties of some rare-earth nuclei , 1973 .

[56]  C. Elster,et al.  Nucleon-antinucleon interaction; Quark-gluon versus meson exchange , 1984 .

[57]  T. Skyrme CVII. The nuclear surface , 1956 .

[58]  S. Wallace,et al.  IMPULSE APPROXIMATION DIRAC OPTICAL POTENTIAL , 1983 .

[59]  A. H. Wapstra,et al.  The 1983 atomic mass evaluation: (II). Nuclear-reaction and separation energies , 1985 .

[60]  K. Wehrberger,et al.  Effect of vacuum fluctuations on the quasielastic response functions in quantum hadrodynamics , 1989 .

[61]  R. Malfliet,et al.  NUCLEONS, MESONS AND DELTAS IN NUCLEAR-MATTER - A RELATIVISTIC DIRAC-BRUECKNER APPROACH , 1987 .

[62]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[63]  D. Vautherin,et al.  HARTREE--FOCK CALCULATIONS WITH SKYRME'S INTERACTION. II. AXIALLY DEFORMED NUCLEI. , 1973 .

[64]  Price,et al.  Self-consistent Hartree description of deformed nuclei in a relativistic quantum field theory. , 1987, Physical review. C, Nuclear physics.

[65]  Ring,et al.  Relativistic mean-field theory and nuclear deformation. , 1987, Physical review letters.

[66]  P. Ring,et al.  A relativistic description of rotating nuclei: The yrast line of 20Ne☆ , 1989 .

[67]  S. Wallace,et al.  RELATIVISTIC IMPULSE APPROXIMATION FOR P NUCLEUS ELASTIC SCATTERING , 1983 .