Distributed Detection and Data Fusion
暂无分享,去创建一个
1 Introduction.- 1.1 Distributed Detection Systems.- 1.2 Outline of the Book.- 2 Elements of Detection Theory.- 2.1 Introduction.- 2.2 Bayesian Detection Theory.- 2.3 Minimax Detection.- 2.4 Neyman-Pearson Test.- 2.5 Sequential Detection.- 2.6 Constant False Alarm Rate (CFAR) Detection.- 2.7 Locally Optimum Detection.- 3 Distributed Bayesian Detection: Parallel Fusion Network.- 3.1 Introduction.- 3.2 Distributed Detection Without Fusion.- 3.3 Design of Fusion Rules.- 3.4 Detection with Parallel Fusion Network.- 4 Distributed Bayesian Detection: Other Network Topologies.- 4.1 Introduction.- 4.2 The Serial Network.- 4.3 Tree Networks.- 4.4 Detection Networks with Feedback.- 4.5 Generalized Formulation for Detection Networks.- 5 Distributed Detection with False Alarm Rate Constraints.- 5.1 Introduction.- 5.2 Distributed Neyman-Pearson Detection.- 5.3 Distributed CFAR Detection.- 5.4 Distributed Detection of Weak Signals.- 6 Distributed Sequential Detection.- 6.1 Introduction.- 6.2 Sequential Test Performed at the Sensors.- 6.3 Sequential Test Performed at the Fusion Center.- 7 Information Theory and Distributed Hypothesis Testing.- 7.1 Introduction.- 7.2 Distributed Detection Based on Information Theoretic Criterion.- 7.3 Multiterminal Detection with Data Compression.- Selected Bibliography.