Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy.

[1]  P. Shannon,et al.  Exome sequencing identifies the cause of a Mendelian disorder , 2009, Nature Genetics.

[2]  D. Rice,et al.  TSPAN12 Regulates Retinal Vascular Development by Promoting Norrin- but Not Wnt-Induced FZD4/β-Catenin Signaling , 2009, Cell.

[3]  F. Cremers,et al.  Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. , 2009, Investigative ophthalmology & visual science.

[4]  Dmitry Pushkarev,et al.  Single-molecule sequencing of an individual human genome , 2009, Nature Biotechnology.

[5]  J. Whelan,et al.  Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells , 2009, Nucleic acids research.

[6]  J. Shendure,et al.  IFRD1 is a candidate gene for SMNA on chromosome 7q22-q23. , 2009, American journal of human genetics.

[7]  D. Guernsey,et al.  Phenotypic Overlap of Familial Exudative Vitreoretinopathy (FEVR) with Persistent Fetal Vasculature (PFV) Caused by FZD4 Mutations in two Distinct Pedigrees , 2009, Ophthalmic genetics.

[8]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[9]  Dawei Li,et al.  The diploid genome sequence of an Asian individual , 2008, Nature.

[10]  M. Wang,et al.  A model for familial exudative vitreoretinopathy caused by LPR5 mutations. , 2008, Human molecular genetics.

[11]  S. Feil,et al.  Vascular changes in the cerebellum of Norrin /Ndph knockout mice correlate with high expression of Norrin and Frizzled‐4 , 2008, The European journal of neuroscience.

[12]  R. DeSalle,et al.  Appearance of new tetraspanin genes during vertebrate evolution. , 2008, Genomics.

[13]  Marcus Fruttiger,et al.  Development of the retinal vasculature , 2007, Angiogenesis.

[14]  David Haussler,et al.  New Methods for Detecting Lineage-Specific Selection , 2006, RECOMB.

[15]  M. Hemler Tetraspanin functions and associated microdomains , 2005, Nature Reviews Molecular Cell Biology.

[16]  Tom H. Lindner,et al.  easyLINKAGE-Plus--automated linkage analyses using large-scale SNP data , 2005, Bioinform..

[17]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[18]  M. Trese,et al.  Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. , 2004, American journal of human genetics.

[19]  N. Burton,et al.  CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. , 2004, Blood.

[20]  Kang Zhang,et al.  Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. , 2004, Investigative ophthalmology & visual science.

[21]  J. Nathans,et al.  Vascular Development in the Retina and Inner Ear Control by Norrin and Frizzled-4, a High-Affinity Ligand-Receptor Pair , 2004, Cell.

[22]  V. Winfrey,et al.  Processing, localization and binding activity of zonadhesin suggest a function in sperm adhesion to the zona pellucida during exocytosis of the acrosome. , 2003, The Biochemical journal.

[23]  M. Hemler,et al.  Specific tetraspanin functions , 2001, The Journal of cell biology.

[24]  W. Murphy,et al.  Resolution of the Early Placental Mammal Radiation Using Bayesian Phylogenetics , 2001, Science.

[25]  J. Mullikin,et al.  SSAHA: a fast search method for large DNA databases. , 2001, Genome research.

[26]  A. Meindl,et al.  A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation , 2000, Nature Genetics.

[27]  E. Zrenner,et al.  RDS/peripherin gene mutations are frequent causes of central retinal dystrophies. , 1997, Journal of medical genetics.

[28]  C. Inglehearn,et al.  Mutations and polymorphisms in the human peripherin‐RDS gene and their involvement in inherited retinal degeneration , 1996, Human mutation.

[29]  A. Fielder,et al.  A mutation in the Norrie disease gene (NDP) associated with X–linked familial exudative vitreoretinopathy , 1993, Nature genetics.

[30]  X. Breakefield,et al.  Characterization of a mutation within the NDP gene in a family with a manifesting female carrier. , 1993, Human molecular genetics.

[31]  S. Mukai,et al.  Familial Exudative Vitreoretinopathy , 2021, A Quick Guide to Pediatric Retina.

[32]  C. E. Vannouhuys Dominant exudative vitreoretinopathy. , 1985 .

[33]  C. E. van Nouhuys Dominant exudative vitreoretinopathy. , 1985, Ophthalmic paediatrics and genetics.

[34]  J. Norris,et al.  Autosomal dominant exudative vitreoretinopathy. , 1983, Archives of ophthalmology.

[35]  C. E. Nouhuys,et al.  Dominant Exudative Vitreoretinopathy and other Vascular Developmental Disorders of the Peripheral Retina , 1982, Monographs in Opthalmology 5.

[36]  C. Canny,et al.  Fluorescein angiographic findings in familial exudative vitreoretinopathy. , 1976, Archives of ophthalmology.

[37]  G. Oliver,et al.  Familial exudative vitreoretinopathy. An expanded view. , 1971, Archives of ophthalmology.

[38]  V. G. Criswick,et al.  Familial exudative vitreoretinopathy. , 1969, American journal of ophthalmology.